660 research outputs found
Recommended from our members
Compliant substrate epitaxy: Au on MoS2
A theory for the epitaxial growth of Au on MoS2 is developed and analyzed. The theory combines continuum linear elasticity theory with density functional theory to analyze epitaxial growth in this system. It is demonstrated that if one accounts for interfacial energies and strains, the presence of misfit dislocations, and the compliance of the MoS2 substrate, the experimentally observed growth orientation is favored despite the fact that it represents a larger elastic mismatch than two competing structures. The stability of the experimentally preferred orientation is attributed to the formation of a large number of strong Au-S bonds, and it is noted that this strong bond may serve as a means to exfoliate and transfer large single layers sheets of MoS2, as well as to engineer strain within single layers of MoS2. The potential for using a van der Waals-bonded layered material as a compliant substrate for applications in 2D electronic devices and epitaxial thin film growth is discussed
Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins
Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f
is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed
electron spin resonance technique, thereby the effect of environmental 29^Si
nuclear spins on the donor electron spin is systematically studied. The
linewidth as a function of f shows a good agreement with theoretical analysis.
We also report the phase memory time T_M of the donor electron spin dependent
on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure
Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)
We are conducting an experiment to search for WIMPs, or weakly-interacting
massive particles, in the galactic halo using terrestrial detectors. This
generic class of hypothetical particles, whose properties are similar to those
predicted by extensions of the standard model of particle physics, could
comprise the cold component of non-baryonic dark matter. We describe our
experiment, which is based on cooled germanium and silicon detectors in a
shielded low-background cryostat. The detectors achieve a high degree of
background rejection through the simultaneous measurement of the energy in
phonons and ionization. Using exposures on the order of one kilogram-day from
initial runs of our experiment, we have achieved (preliminary) upper limits on
the WIMP-nucleon cross section that are comparable to much longer runs of other
experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of
TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A.
di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed
Extra cardiac findings by 64-multidetector computed tomography in patients with symptomatic atrial fibrillation prior to pulmonal vein isolation
The aim of this study was to investigate the prevalence of extracardiac findings diagnosed by 64-multidetector computed tomography (MDCT) examinations prior to circumferential pulmonary vein (PV) ablation of atrial fibrillation (AF). A total of 158 patients (median age, 60.5 years; male 68%) underwent 64-MDCT of the chest and upper abdomen to characterize left atrial and PV anatomy prior to AF ablation. MDCT images were evaluated by a thoracic radiologist and a cardiologist. For additional scan interpretation, bone, lung, and soft tissue window settings were used. CT scans with extra-cardiac abnormalities categorized for the anatomic distribution and divided into two groups: Group 1—exhibiting clinically significant or potentially significant findings, and Group 2—patients with clinically non-significant findings. Extracardiac findings (n = 198) were observed in 113/158 (72%) patients. At least one significant finding was noted in 49/158 patients (31%). Group 1 abnormalities, such as malignancies or pneumonias, were found in 85/198 findings (43%). Group 2 findings, for example mild degenerative spine disease or pleural thickening, were observed in 113/198 findings (72%). 74/198 Extracardiac findings were located in the lung (37%), 35/198 in the mediastinum (18%), 8/198 into the liver (4%) and 81/198 were in other organs (41). There is an appreciable prevalence of prior undiagnosed extracardiac findings detected in patients with AF prior to PV-Isolation by MDCT. Clinically significant or potentially significant findings can be expected in ~40% of patients who undergo cardiac MDCT. Interdisciplinary trained personnel is required to identify and interpret both cardiac and extra cardiac findings
Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor
Background: It is well established that chronic tumor growth results in functional inactivation of T cells and NK cells. It is less clear, however, whether lymphopoeisis is affected by tumor growth. Principal Findings: In our efforts of analyzing the impact of tumor growth on NK cell development, we observed a major reduction of NK cell numbers in mice bearing multiple lineages of tumor cells. The decrease in NK cell numbers was not due to increased apoptosis or decreased proliferation in the NK compartment. In addition, transgenic expression of IL-15 also failed to rescue the defective production of NK cells. Our systematic characterization of lymphopoeisis in tumor-bearing mice indicated that the number of the common lymphoid progenitor was significantly reduced in tumor-bearing mice. The number of B cells also decreased substantially in tumor bearing mice. Conclusions and Significance: Our data reveal a novel mechanism for tumor evasion of host immunity and suggest a new interpretation for the altered myeloid and lymphoid ratio in tumor bearing hosts
Magnetic effects in sulfur-decorated graphene
The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects in graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.open1165sciescopu
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
Interaction of microtubules and actin during the post-fusion phase of exocytosis
Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis
Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement
- …