18 research outputs found
Myocardial perfusion imaging with 99 mTc - tetrofosmin SPECT in breast cancer patients that received postoperative radiotherapy: a case-control study
<p>Abstract</p> <p>Purpose</p> <p>To evaluate the cardiac toxicity of radiotherapy (RT) in breast cancer (BC) patients employing myocardial perfusion imaging (MPI) with Tc-99 m Tetrofosmin - single photon emission computer tomography (T-SPECT).</p> <p>Materials and methods</p> <p>We studied 46 BC female patients (28 patients with left and 18 patients with right BC) treated with postoperative RT compared to a control group of 85 age-matched females. The median time of RT to SPECT was 40 months (6-263).</p> <p>Results</p> <p>Abnormalities in the summed stress score (SSS) were found in 54% of left BC patients, 44.4% of right BC patients, and 32.9% of controls. In left BC patients there were significantly more SSS abnormalities compared to controls (4.0 ± 3.5 vs 2.6 ± 2.0, p = 0.05) and possible trend of increased abnormalities of right BC patients (3.7 ± 3.0 vs 2.6 ± 2.0, p = 0.14). Multiple regression analysis showed more abnormalities in the MPI of left BC patients compared to controls (SSS, p = 0.0001); Marginal toxicity was also noted in right BC patients (SSS, p = 0.045). No additional toxicity was found in patients that received adjuvant cardiotoxic chemotherapy. All T-SPECT abnormalities were clinically silent.</p> <p>Conclusion</p> <p>The study suggests that radiation therapy to BC patients result in MPI abnormalities but without apparent clinical consequences.</p
The genome landscape of indigenous African cattle
Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems.
Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds.
Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent
Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis
<p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p