2,962 research outputs found

    Superdiffusion in the Dissipative Standard Map

    Full text link
    We consider transport properties of the chaotic (strange) attractor along unfolded trajectories of the dissipative standard map. It is shown that the diffusion process is normal except of the cases when a control parameter is close to some special values that correspond to the ballistic mode dynamics. Diffusion near the related crisises is anomalous and non-uniform in time: there are large time intervals during which the transport is normal or ballistic, or even superballistic. The anomalous superdiffusion seems to be caused by stickiness of trajectories to a non-chaotic and nowhere dense invariant Cantor set that plays a similar role as cantori in Hamiltonian chaos. We provide a numerical example of such a sticky set. Distribution function on the sticky set almost coincides with the distribution function (SRB measure) of the chaotic attractor.Comment: 10 Figure

    Probability of local bifurcation type from a fixed point: A random matrix perspective

    Full text link
    Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as universal approximators (neural networks). The eigenvalue spectra is considered both numerically and analytically using previous work of Edelman et. al. Based upon the numerical evidence, various conjectures are presented. The conclusion is that in many circumstances, most bifurcations from fixed points of large dynamical systems will be due to complex eigenvalues. Nevertheless, surprising situations are presented for which the aforementioned conclusion is not general, e.g. real random matrices with Gaussian elements with a large positive mean and finite variance.Comment: 21 pages, 19 figure

    Report of conference evaluation committee

    Get PDF
    A general classification is made of a number of approaches used for the prediction of turbulent shear flows. The sensitivity of these prediction methods to parameter values and initial data are discussed in terms of variable density, pressure fluctuation, gradient diffusion, low Reynolds number, and influence of geometry

    Surface waves at a free interface of a saturated porous medium

    Get PDF
    Surface waves at a free interface of a saturated porous medium are investigated. Existence and peculiarities of surface wave propagation were revealed. Two types of surface waves proved possible: true surface wave, propagating almost without dispersion, and generalized Rayleigh wave, which attenuates along the propagation direction

    Simplest miniversal deformations of matrices, matrix pencils, and contragredient matrix pencils

    Get PDF
    V. I. Arnold [Russian Math. Surveys 26 (2) (1971) 29-43] constructed a simple normal form for a family of complex n-by-n matrices that smoothly depend on parameters with respect to similarity transformations that smoothly depend on the same parameters. We construct analogous normal forms for a family of real matrices and a family of matrix pencils that smoothly depend on parameters, simplifying their normal forms by D. M. Galin [Uspehi Mat. Nauk 27 (1) (1972) 241-242] and by A. Edelman, E. Elmroth, B. Kagstrom [Siam J. Matrix Anal. Appl. 18 (3) (1997) 653-692].Comment: 20 page

    On the possibility to supercool molecular hydrogen down to superfluid transition

    Full text link
    Recent calculations by Vorobev and Malyshenko (JETP Letters, 71, 39, 2000) show that molecular hydrogen may stay liquid and superfluid in strong electric fields of the order of 4×107V/cm4\times 10^7 V/cm. I demonstrate that strong local electric fields of similar magnitude exist beneath a two-dimensional layer of electrons localized in the image potential above the surface of solid hydrogen. Even stronger local fields exist around charged particles (ions or electrons) if surface or bulk of a solid hydrogen crystal is statically charged. Measurements of the frequency shift of the 121 \to 2 photoresonance transition in the spectrum of two-dimensional layer of electrons above positively or negatively charged solid hydrogen surface performed in the temperature range 7 - 13.8 K support the prediction of electric field induced surface melting. The range of surface charge density necessary to stabilize the liquid phase of molecular hydrogen at the temperature of superfluid transition is estimated.Comment: 5 pages, 2 figure

    Dynamics of the Chain of Oscillators with Long-Range Interaction: From Synchronization to Chaos

    Full text link
    We consider a chain of nonlinear oscillators with long-range interaction of the type 1/l^{1+alpha}, where l is a distance between oscillators and 0< alpha <2. In the continues limit the system's dynamics is described by the Ginzburg-Landau equation with complex coefficients. Such a system has a new parameter alpha that is responsible for the complexity of the medium and that strongly influences possible regimes of the dynamics. We study different spatial-temporal patterns of the dynamics depending on alpha and show transitions from synchronization of the motion to broad-spectrum oscillations and to chaos.Comment: 22 pages, 10 figure
    corecore