42 research outputs found

    MicroRNA expression in tumor cells from Waldenstrom's macroglobulinemia reflects both their normal and malignant cell counterparts

    Get PDF
    MicroRNAs (miRNAs) are involved in the regulation of many cellular processes including hematopoiesis, with the aberrant expression of differentiation-stage specific miRNA associated with lymphomagenesis. miRNA profiling has been essential for understanding the underlying biology of many hematological malignancies; however the miRNA signature of the diverse tumor clone associated with Waldenstrom's macroglobulinemia (WM), consisting of B lymphocytes, plasmacytes and lymphoplasmacytic cells, has not been characterized. We have investigated the expression of over 13ā€‰000 known and candidate miRNAs in both CD19+ and CD138+ WM tumor cells, as well as in their malignant and non-malignant counterparts. Although neither CD19+ nor CD138+ WM cells were defined by a distinct miRNA profile, the combination of all WM cells revealed a unique miRNA transcriptome characterized by the dysregulation of many miRNAs previously identified as crucial for normal B-cell lineage differentiation. Specifically, miRNA-9*/152/182 were underexpressed in WM, whereas the expression of miRNA-21/125b/181a/193b/223/363 were notably increased (analysis of variance; P<0.0001). Future studies focusing on the effects of these dysregulated miRNAs will provide further insight into the mechanisms responsible for the pathogenesis of WM

    Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma

    Get PDF

    MALT1, BCL10 and FOXP1 in salivary gland mucosa-associated lymphoid tissue lymphomas

    Get PDF
    In view of the certain anatomic site-dependent frequency of chromosomal translocations involved in extranodal marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) pathogenesis, 17 salivary gland MALT lymphoma cases were analyzed for MALT1 and FOXP1 translocations. B cell CLL/lymphoma 10 (BCL10) and forkhead box PA (FOXP1) protein expression were studied by immunohistochemistry and translocations identified using fluorescence in situ hybridization (FISH)-specific probes FOXP1, t(11;18)(q21;q21)/API2-MALT1 and t(14;18)(q32;q21)/IgH-MALT1. None of the 11 analyzed cases showed FOXP1 rearrangement or amplification. The t(11;18) was present in five of 13 cases and the t(14;18) in three of 13 cases. MALT1 translocations were mostly mutually exclusive except in a single case. FOXP1 protein expression showed differences in the proportion of tumor cells with nuclear expression but not in their intensity, with the exception of one case where very intense nuclear staining was noted. BCL10 nuclear expression was present in four of 17 cases, two of which lacked t(11;18). Our results suggest that MALT1-specific translocations and FOXP1 rearrangements are not commonly involved in pathogenesis. A case with strong FOXP1 protein expression indicates the possibility that the upregulation of FOXP1 expression is significant in a small subset of salivary gland MALT lymphomas. Also a single case in which both MALT1 translocations were present indicates that these are not always mutually exclusive
    corecore