21 research outputs found

    Reise in den äussersten Norden und Osten Sibiriens während der Jahre 1843 und 1844 mit allerhöchster Genehmigung auf Veranstaltung der Kaiserlichen Akademie der Wissenschaften zu St. Petersburg ausgeführt und in Verbindung mit vielen Gelehrten

    No full text
    I. Bd., Th. I. Einleitung. Klimatologie. Geognosie. Fossile Hölzer. Bearb. von H. R. Göppert. Fossile Mollusken. Bearb. von A. Graf Keyserling. Fossile Fische. Bearb. von J. Müller. 1847. Th.II. Botanik. Bearb. von E. R. v. Trautvetter, F. T. Ruprecht, C. A. Meyer, E. und G. Borszczow. 1856.--II. Bd. Zoologie. Th. I. Wirbellose thiere ... bearb. von F. Brandt, W. F. Erichson, Seb. Fischer, E. Grube, E. Ménétriés, A. Th. v. Middendorff. 1851. Th. II. Säugethiere, vögel und amphibien. Bearb. von A. Th. v. Middendorff. 1853.--III. Bd. Über die Sprache der Jakuten. Th. 1. Lfg. 1. Jakutischer Text. 1848. Th. 2. Lfg. 1. Jakutisch-deutsches Wörterbuch. 1851.--IV. Bd. Übersicht der Natur Nord- und Ost-Sibiriens. Th. 1. Lfg. 1. Einleitung, Geographie und Hydrographie. 1859. Lfg. 1. Atlas. 1859. Lfg. 2. Orographie und Geognosie. 1860. Lfg. 4. Die gewächse Sibiriens. 1864. Th. 2. Lfg. 1.-2. Die Thierwelt Sibiriens. 1867-1874. Lfg. 3. Die eingeborenen Sibiriens. 1875.Mode of access: Internet

    A 3D bioprinting system to produce human-scale tissue constructs with structural integrity

    No full text
    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 ??m for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.clos
    corecore