39 research outputs found

    The Effect of Structural Complexity, Prey Density, and “Predator-Free Space” on Prey Survivorship at Created Oyster Reef Mesocosms

    Get PDF
    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats

    The Effect of Oxygenates on Diesel Engine Particulate Matter

    No full text
    A summary is presented of experimental results obtained from a Cummins B5.9 175 hp, direct-injected diesel engine fueled with oxygenated diesel blends. The oxygenates tested were dimethoxy methane (DMM), diethyl ether, a blend of monoglyme and diglyme, and ethanol. The experimental results show that particulate matter (PM) reduction is controlled largely by the oxygen content of the blend fuel. For the fuels tested, the effect of chemical structure was observed to be small. Isotopic tracer tests with ethanol blends reveal that carbon from ethanol does contribute to soot formation, but is about 50 % less likely to form soot when compared to carbon from the diesel portion of the fuel. Numerical modeling was carried out to investigate the effect of oxygenate addition on soot formation. This effort was conducted using a chemical kinetic mechanism incorporating n-heptane, DMM and ethanol chemistry, along with reactions describing soot formation. Results show that oxygenates reduce the production of soot precursors (and therefore soot and PM) through several key mechanisms. The first is due to the natural shift in pyrolysis and decomposition products. In addition, high radical concentrations produced by oxygenate addition promote carbon oxidation to CO and CO2, limiting carbon availability for soot precursor formation. Additionally, high radical concentrations (primarily OH) serve to limit aromatic ring growth and soot particle inception

    Increased Strength and Physical Performance with Eccentric Training in Women with Impaired Glucose Tolerance: A Pilot Study

    Get PDF
    Background: Menopause is associated with both a loss of muscle mass and a worsening of insulin sensitivity (IS). Although eccentric resistance exercise (ECC) can effectively improve muscle mass over time, a single bout of ECC can worsen IS. This study assessed the effect of repeated ECC on IS, muscle mass, and function in postmenopausal women with impaired glucose tolerance (IGT). Methods: Sixteen PM women (aged 56 years +/- 6.4) with IGT were randomly assigned to a 12-week, knee extensor ECC program (n = 10) or a nonexercise control group (CON) (n = 6). Participants underwent hyperinsulinemic-euglycemic clamps, dual-energy x-ray (DEXA) absorptiometry, quadriceps strength assessment, 6 minute walk (6MW) tests, and an assessment of steps taken per day before and after training. Results: ECC participants experienced greater increases in leg lean soft tissue mass (ECC, 0.41 kg; CON, -0.53 kg; p = 0.03), quadriceps strength (ECC, 9.3 kg force; CON, -2.9 kg force; p = 0.02), and 6MW distance (ECC, 56.4 meters; CON, 3.3 meters; p = 0.03) than CON participants and demonstrated a trend toward more steps taken per day post training (ECC, +1747 steps; CON, +339 steps; p = 0.10). IS was unchanged. Conclusions: This novel exercise improves muscle mass and function without worsening IS in postmenopausal women with IGT. Because it can be performed at low levels of exertion and improves muscle mass and function without impairing IS, ECC should be used to ameliorate muscle loss in physically inactive postmenopausal women. The impact of longer-term ECC on IS should be investigated. Demonstrating that ECC does not worsen IS in this population is significant because it has promise to combat the muscle-mediated impairments common in aging women

    Theory and Application of Landfarming to Remediate PAHs and Mineral Oil Contaminated Sediments: Beneficial Reuse

    Get PDF
    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described using a multi-compartment model and first-order kinetics, in which three degradable fractions are distinguished; (1) rapid, (2) slowly, and (3) very slowly degradable. Using this model populated with data from long-term experiments (initiated in 1990), it is shown that time frames from years to decades can be necessary to clean the soil or sediment to obtain a target below regulatory guidelines. In passive landfarms without active management, three principal potentially limiting factors can be identified: (1) availability of appropriate microorganisms, (2) supply of oxygen for the biodegradation process, and (3) bioavailability of the pollutants to the microorganisms. Bioavailable PAHs and mineral oil are readily biodegradable contaminants under aerobic conditions, and presence and activity of microorganisms are not problems. The other two factors can be limiting and are theoretically described. Using these descriptions, which are in agreement with field experiments of 10 to 15 yr, it is shown if and when optimization of the biodegradation process is an option. Because a long time period is necessary to degrade the slowly and very slowly degradable fractions, passive landfarming should be combined with beneficial use of the land area. Examples include the development of natural environments, use in constructions, growing of biomass for energy production, including biofuels, and use as cover for landfills
    corecore