302 research outputs found

    Nemo: a computational tool for analyzing nematode locomotion

    Get PDF
    The nematode Caenorhabditis elegans responds to an impressive range of chemical, mechanical and thermal stimuli and is extensively used to investigate the molecular mechanisms that mediate chemosensation, mechanotransduction and thermosensation. The main behavioral output of these responses is manifested as alterations in animal locomotion. Monitoring and examination of such alterations requires tools to capture and quantify features of nematode movement. In this paper, we introduce Nemo (nematode movement), a computationally efficient and robust two-dimensional object tracking algorithm for automated detection and analysis of C. elegans locomotion. This algorithm enables precise measurement and feature extraction of nematode movement components. In addition, we develop a Graphical User Interface designed to facilitate processing and interpretation of movement data. While, in this study, we focus on the simple sinusoidal locomotion of C. elegans, our approach can be readily adapted to handle complicated locomotory behaviour patterns by including additional movement characteristics and parameters subject to quantification. Our software tool offers the capacity to extract, analyze and measure nematode locomotion features by processing simple video files. By allowing precise and quantitative assessment of behavioral traits, this tool will assist the genetic dissection and elucidation of the molecular mechanisms underlying specific behavioral responses.Comment: 12 pages, 2 figures. accepted by BMC Neuroscience 2007, 8:8

    Decaying Dark Matter can explain the electron/positron excesses

    Full text link
    PAMELA and ATIC recently reported excesses in e+ e- cosmic rays. Since the interpretation in terms of DM annihilations was found to be not easily compatible with constraints from photon observations, we consider the DM decay hypothesis and find that it can explain the e+ e- excesses compatibly with all constraints, and can be tested by dedicated HESS observations of the Galactic Ridge. ATIC data indicate a DM mass of about 2 TeV: this mass naturally implies the observed DM abundance relative to ordinary matter if DM is a quasi-stable composite particle with a baryon-like matter asymmetry. Technicolor naturally yields these type of candidates.Comment: 20 pages, 7 figure

    Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (<it>Hexb </it>gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (<it>Hexb-/-</it>), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system.</p> <p>Results</p> <p>We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the <it>Hexb</it>+/- and <it>Hexb</it>-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of <it>Hexb</it>+/- and <it>Hexb</it>-/- mice showed normal myelin periods; however, <it>Hexb</it>-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of <it>Hexb-/- </it>mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the <it>Hexb</it>-/- mice (undetectable in <it>Hexb</it>+/-).</p> <p>Conclusion</p> <p>Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.</p

    Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    Get PDF
    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology

    Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming

    Get PDF
    Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Dynamic Changes in the MicroRNA Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain

    Get PDF
    Neuropathic pain resulting from nerve lesions or dysfunction represents one of the most challenging neurological diseases to treat. A better understanding of the molecular mechanisms responsible for causing these maladaptive responses can help develop novel therapeutic strategies and biomarkers for neuropathic pain. We performed a miRNA expression profiling study of dorsal root ganglion (DRG) tissue from rats four weeks post spinal nerve ligation (SNL), a model of neuropathic pain. TaqMan low density arrays identified 63 miRNAs whose level of expression was significantly altered following SNL surgery. Of these, 59 were downregulated and the ipsilateral L4 DRG, not the injured L5 DRG, showed the most significant downregulation suggesting that miRNA changes in the uninjured afferents may underlie the development and maintenance of neuropathic pain. TargetScan was used to predict mRNA targets for these miRNAs and it was found that the transcripts with multiple predicted target sites belong to neurologically important pathways. By employing different bioinformatic approaches we identified neurite remodeling as a significantly regulated biological pathway, and some of these predictions were confirmed by siRNA knockdown for genes that regulate neurite growth in differentiated Neuro2A cells. In vitro validation for predicted target sites in the 3′-UTR of voltage-gated sodium channel Scn11a, alpha 2/delta1 subunit of voltage-dependent Ca-channel, and purinergic receptor P2rx ligand-gated ion channel 4 using luciferase reporter assays showed that identified miRNAs modulated gene expression significantly. Our results suggest the potential for miRNAs to play a direct role in neuropathic pain

    Discovery of Porcine microRNAs in Multiple Tissues by a Solexa Deep Sequencing Approach

    Get PDF
    The domestic pig (Sus scrofa) is an important economic animal for meat production and as a suitable model organism for comparative genomics and biomedical studies. In an effort to gain further identification of miRNAs in the pig, we have applied the Illumina Solexa sequencing technology to carry out an in-depth analysis of the miRNA transcriptome in a pool of equal amounts of RNA from 16 different porcine tissues. From this data set, we identified 437 conserved and 86 candidate novel miRNA/miRNA* in the pig, corresponding to 329 miRNA genes. Compared with all the reported porcine miRNAs, the result showed that 112 conserved and 61 candidate novel porcine miRNA were first reported in this study. Further analysis revealed extensive sequence variations (isomiRs) of porcine miRNAs, including terminal isomiRs at both the 5′ and 3′ ends and nucleotide variants. Read counts of individual porcine miRNA spanned from a few reads to approximately 405541 reads, confirming the different level of expression of porcine miRNAs. Subsequently, the tissue expression patterns of 8 miRNAs were characterized by Northern blotting. The results showed that miR-145, miR-423-5p, miR-320, miR-26a, and miR-191 are ubiquitously expressed in diverse tissues, while miR-92, miR-200a, and miR-375 were selectively enriched and expressed in special tissues. Meanwhile, the expression of 8 novel porcine-specific miRNAs was validated by stem-loop RT-PCR, and one of these was detected by Northern blotting. Using the porcine miRNA array designed according to our Solexa results, 123 miRNAs were detected expression in porcine liver tissues. A total of 58 miRNAs showed differential expression between the Tongcheng (a Chinese indigenous fatty breed) and Large White pig breeds (a lean type pig). Taken together, our results add new information to existing data on porcine miRNAs and should be useful for investigating the biological functions of miRNAs in pig and other species

    Pt and CoB trilayer Josephson π junctions with perpendicular magnetic anisotropy

    Get PDF
    We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co68B32/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we report that there is no magnetic dead layer at the Pt/Co68B32 interfaces, allowing us to study barriers with ultra-thin Co68B32. In the junctions, we observe that the magnitude of the critical current oscillates with increasing thickness of the Co68B32 strong ferromagnetic alloy layer. The oscillations are attributed to the ground state phase difference across the junctions being modified from zero to π. The multiple oscillations in the thickness range 0.2 ⩽ dCoB ⩽ 1.4 nm suggests that we have access to the first zero-π and π-zero phase transitions. Our results fuel the development of low-temperature memory devices based on ferromagnetic Josephson junctions

    Impairment of circulating endothelial progenitors in Down syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome.</p> <p>Methods</p> <p>Circulating endothelial progenitors of Down syndrome affected individuals were isolated, <it>in vitro </it>cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of <it>CXCL12 </it>gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis.</p> <p>Results</p> <p>We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells.</p> <p>Conclusions</p> <p>Our data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.</p
    corecore