12 research outputs found
Dephasing of a Qubit due to Quantum and Classical Noise
The qubit (or a system of two quantum dots) has become a standard paradigm
for studying quantum information processes. Our focus is Decoherence due to
interaction of the qubit with its environment, leading to noise. We consider
quantum noise generated by a dissipative quantum bath. A detailed comparative
study with the results for a classical noise source such as generated by a
telegraph process, enables us to set limits on the applicability of this
process vis a vis its quantum counterpart, as well as lend handle on the
parameters that can be tuned for analyzing decoherence. Both Ohmic and
non-Ohmic dissipations are treated and appropriate limits are analyzed for
facilitating comparison with the telegraph process.Comment: 12 pages, 8 figure
Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL
Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very
promising technique that can be employed at X-ray Free Electron Lasers (FELs)
to investigate out-of-equilibrium dynamics for material and energy research.
Here we present a dedicated setup for soft X-rays available at the Spectroscopy
& Coherent Scattering (SCS) instrument at the European X-ray Free Electron
Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used
in transmission to create three copies of the incoming beam, which are used to
measure the transmitted intensity through the excited and unexcited sample, as
well as to monitor the incoming intensity. Since these three intensity signals
are detected shot-by-shot and simultaneously, this setup allows normalized
shot-by-shot analysis of the transmission. For photon detection, the DSSC
imaging detector, which is capable of recording up to 800 images at 4.5 MHz
frame rate during the FEL burst, is employed and allows approaching the photon
shot-noise limit. We review the setup and its capabilities, as well as the
online and offline analysis tools provided to users.Comment: 11 figure
Reduced density-matrix functionals from many-particle theory
In materials with strong electron correlation the proper treatment of local atomic physics described by orbital occupations is crucial. Reduced density-matrix functional theory is a natural extension of density functional theory for systems that are dominated by orbital physics. We review the current state of reduced density-matrix functional theory (RDMFT). For atomic structure relaxations or ab-initio molecular dynamics the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) possesses a number of disadvantages, like the cumbersome evaluation of forces. We therefore describe a method, DFT+RDMFT, that combines many-particle effects based on reduced density-matrix functional theory with a density functional-like framework. A recent development is the construction of density-matrix functionals directly from many-particle theory such as methods from quantum chemistry or many-particle Green's functions. We present the underlying exact theorems and describe current progress towards quantitative functionals
The Karabo distributed control system
The Karabo distributed control system has been developed to address the challenging requirements of the European X-ray Free Electron Laser facility, including complex and custom-made hardware, high data rates and volumes, and close integration of data analysis for distributed processing and rapid feedback. Karabo is a pluggable, distributed application management system forming a supervisory control and data acquisition environment as part of a distributed control system. Karabo provides integrated control of hardware, monitoring, data acquisition and data analysis on distributed hardware, allowing rapid control feedback based on complex algorithms. Services exist for access control, data logging, configuration management and situational awareness through alarm indicators. The flexible framework enables quick response to the changing requirements in control and analysis, and provides an efficient environment for development, and a single interface to make all changes immediately available to operators and experimentalists.</p
The Karabo distributed control system
The Karabo distributed control system has been developed to address the challenging requirements of the European X-ray Free Electron Laser facility, including complex and custom-made hardware, high data rates and volumes, and close integration of data analysis for distributed processing and rapid feedback. Karabo is a pluggable, distributed application management system forming a supervisory control and data acquisition environment as part of a distributed control system. Karabo provides integrated control of hardware, monitoring, data acquisition and data analysis on distributed hardware, allowing rapid control feedback based on complex algorithms. Services exist for access control, data logging, configuration management and situational awareness through alarm indicators. The flexible framework enables quick response to the changing requirements in control and analysis, and provides an efficient environment for development, and a single interface to make all changes immediately available to operators and experimentalists
Data Exploration and Analysis with Jupyter Notebooks
International audienceJupyter notebooks are executable documents that are displayed in a web browser. The notebook elements consist of human-authored contextual elements and computer code, and computer-generated output from executing the computer code. Such outputs can include tables and plots. The notebook elements can be executed interactively, and the whole notebook can be saved, re-loaded and re-executed, or converted to read-only formats such as HTML, LaTeX and PDF. Exploiting these characteristics, Jupyter notebooks can be used to improve the effectiveness of computational and data exploration, documentation, communication, reproducibility and re-usability of scientific research results. They also serve as building blocks of remote data access and analysis as is required for facilities hosting large data sets and initiatives such as the European Open Science Cloud (EOSC). In this contribution we report from our experience of using Jupyter notebooks for data analysis at research facilities, and outline opportunities and future plans