26 research outputs found

    Archaeological Support for the Three-Stage Expansion of Modern Humans across Northeastern Eurasia and into the Americas

    Get PDF
    Background Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas [1]. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre-[2] or post-[1], [3], [4], [5], [6] last glacial maximum (LGM) colonization, via either a land bridge across Beringia [3], [4], [5], a sea-faring Pacific Rim coastal route [1], [3], a trans-Arctic route [4], or a trans-Atlantic oceanic route [5]. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas. Methodology/Principal Findings We use diffusion models [6], [7] to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia ~46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from ~32-16k calBP, and 3) a second expansion after the LGM ~16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas [8], [9]. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models. Conclusions/Significance Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests

    Association of Mitochondrial DNA Variations with Lung Cancer Risk in a Han Chinese Population from Southwestern China

    Get PDF
    Mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutation due to the high rate of reactive oxygen species (ROS) production and limited DNA-repair capacity in mitochondrial. Previous studies demonstrated that the increased mtDNA copy number for compensation for damage, which was associated with cigarette smoking, has been found to be associated with lung cancer risk among heavy smokers. Given that the common and “non-pathological” mtDNA variations determine differences in oxidative phosphorylation performance and ROS production, an important determinant of lung cancer risk, we hypothesize that the mtDNA variations may play roles in lung cancer risk. To test this hypothesis, we conducted a case-control study to compare the frequencies of mtDNA haplogroups and an 822 bp mtDNA deletion between 422 lung cancer patients and 504 controls. Multivariate logistic regression analysis revealed that haplogroups D and F were related to individual lung cancer resistance (OR = 0.465, 95%CI = 0.329–0.656, p<0.001; and OR = 0.622, 95%CI = 0.425–0.909, p = 0.014, respectively), while haplogroups G and M7 might be risk factors for lung cancer (OR = 3.924, 95%CI = 1.757–6.689, p<0.001; and OR = 2.037, 95%CI = 1.253–3.312, p = 0.004, respectively). Additionally, multivariate logistic regression analysis revealed that cigarette smoking was a risk factor for the 822 bp mtDNA deletion. Furthermore, the increased frequencies of the mtDNA deletion in male cigarette smoking subjects of combined cases and controls with haplogroup D indicated that the haplogroup D might be susceptible to DNA damage from external ROS caused by heavy cigarette smoking

    The Peopling of Korea Revealed by Analyses of Mitochondrial DNA and Y-Chromosomal Markers

    Get PDF
    The Koreans are generally considered a northeast Asian group because of their geographical location. However, recent findings from Y chromosome studies showed that the Korean population contains lineages from both southern and northern parts of East Asia. To understand the genetic history and relationships of Korea more fully, additional data and analyses are necessary.We analyzed mitochondrial DNA (mtDNA) sequence variation in the hypervariable segments I and II (HVS-I and HVS-II) and haplogroup-specific mutations in coding regions in 445 individuals from seven east Asian populations (Korean, Korean-Chinese, Mongolian, Manchurian, Han (Beijing), Vietnamese and Thais). In addition, published mtDNA haplogroup data (N = 3307), mtDNA HVS-I sequences (N = 2313), Y chromosome haplogroup data (N = 1697) and Y chromosome STR data (N = 2713) were analyzed to elucidate the genetic structure of East Asian populations. All the mtDNA profiles studied here were classified into subsets of haplogroups common in East Asia, with just two exceptions. In general, the Korean mtDNA profiles revealed similarities to other northeastern Asian populations through analysis of individual haplogroup distributions, genetic distances between populations or an analysis of molecular variance, although a minor southern contribution was also suggested. Reanalysis of Y-chromosomal data confirmed both the overall similarity to other northeastern populations, and also a larger paternal contribution from southeastern populations.The present work provides evidence that peopling of Korea can be seen as a complex process, interpreted as an early northern Asian settlement with at least one subsequent male-biased southern-to-northern migration, possibly associated with the spread of rice agriculture

    Beringian Standstill and Spread of Native American Founders

    Get PDF
    Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the intial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia. This sequence data was used to direct high-resolution genotyping from 20 American and 26 Asian populations. Here we describe more genetic diversity within the founder population than was previously reported. The newly resolved phylogenetic structure suggests that ancestors of Native Americans paused when they reached Beringia, during which time New World founder lineages differentiated from their Asian sister-clades. This pause in movement was followed by a swift migration southward that distributed the founder types all the way to South America. The data also suggest more recent bi-directional gene flow between Siberia and the North American Arctic

    Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origin of Native American haplogroups

    No full text
    In search of the ancestors of Native American mitochondrial DNA (mtDNA) haplogroups, we analyzed the mtDNA of 531 individuals from nine indigenous populations in Siberia. All mtDNAs were subjected to high-resolution RFLP analysis, sequencing of the control-region hypervariable segment I (HVS-I), and surveyed for additional polymorphic markers in the coding region. Furthermore, the mtDNAs selected according to haplogroup/subhaplogroup status were completely sequenced. Phylogenetic analyses of the resulting data, combined with those from previously published Siberian arctic and sub-arctic populations, revealed that remnants of the ancient Siberian gene pool are still evident in Siberian populations, suggesting that the founding haplotypes of the Native American A-D branches originated in different parts of Siberia. Thus, lineage A complete sequences revealed in the Mansi of the Lower Ob and the Ket of the Lower Yenisei belong to A1, suggesting that A1 mtDNAs occasionally found in the remnants of hunting-gathering populations of northwestern and northern Siberia belonged to a common gene pool of the Siberian progenitors of Paleoindians. Moreover, lineage B1, which is the most closely related to the American B2, occurred in the Tubalar and Tuvan inhabiting the territory between the upper reaches of the Ob River in the west, to the Upper Yenisei region in the east. Finally, the sequence variants of haplogroups C and D, which are most similar to Native American C1 and D1, were detected in the Ulchi of the Lower Amur. Overall, our data suggest that the immediate ancestors of the Siberian/Beringian migrants who gave rise to ancient (pre-Clovis) Paleoindians have a common origin with aboriginal people of the area now designated the Altai-Sayan Upland, as well as the Lower Amur/Sea of Okhotsk region
    corecore