9 research outputs found

    An Exactly Solvable Model for the Integrability-Chaos Transition in Rough Quantum Billiards

    Full text link
    A central question of dynamics, largely open in the quantum case, is to what extent it erases a system's memory of its initial properties. Here we present a simple statistically solvable quantum model describing this memory loss across an integrability-chaos transition under a perturbation obeying no selection rules. From the perspective of quantum localization-delocalization on the lattice of quantum numbers, we are dealing with a situation where every lattice site is coupled to every other site with the same strength, on average. The model also rigorously justifies a similar set of relationships recently proposed in the context of two short-range-interacting ultracold atoms in a harmonic waveguide. Application of our model to an ensemble of uncorrelated impurities on a rectangular lattice gives good agreement with ab initio numerics.Comment: 29 pages, 5 figure

    Extracting hidden symmetry from the energy spectrum

    No full text
    In this paper we revisit the problem of finding hidden symmetries in quantum mechanical systems. Our interest in this problem was renewed by nontrivial degeneracies of a simple spin Hamiltonian used to model spin relaxation in alkali-metal vapours. We consider this spin Hamiltonian in detail and use this example to outline a general approach to finding symmetries when eigenvalues and eigenstates of the Hamiltonian are known. We extract all nontrivial symmetries responsible for the degeneracy and show that the symmetry group of the Hamiltonian is SU(2). The symmetry operators have a simple meaning which becomes transparent in the limit of large spin. As an additional example we apply the method to the hydrogen atom
    corecore