21 research outputs found
Antioxidant effect of Morus nigra on Chagas disease progression
ABSTRACT Considering the widespread popular use of Morus nigra and the amount of scientific information on its antioxidant and anti-inflammatory activity, the effectiveness of this phytotherapeutic compound in the parasitemia progression during the acute phase of Chagas disease and its role in the development of the inflammatory process as well as its effects on the oxidative damage in the chronic phase of infection were evaluated. Thus, 96 male Swiss mice were randomly divided into eight groups, four groups were uninfected controls, and four groups were intraperitoneally infected with 5.0 x 104 blood trypomastigotes forms of T. cruzi QM2 strain. Four batches composed of one uninfected and one infected group were respectively treated with 70% alcohol solution and 25 μL, 50 μL and 75 μL of the phytotherapeutic compound. Levels of antioxidant elements (TBARS, FRAP, GSH and Sulfhydryl groups) were measured in plasma samples. The phytotherapeutic compound’s antioxidant activity was measured by polyphenol and total flavonoid quantification, DPPH, NO, and FRAP method. Our results showed that the vehicle influenced some of the results that may have physiological relevance in Chagas disease. However, an important action of M. nigra tincture was observed in the progression of Chagas disease, since our results demonstrated a reduction in parasitemia of treated groups when compared to controls, especially in the group receiving 25 µL. However, in the chronic phase, the 50-µL dosage presented a better activity on some antioxidant defenses and minimized the tissue inflammatory process. Results indicated an important action of M. nigra tincture on the Chagas disease progression
Lightweight multivariate sensing in WSNs
This paper proposes a self-adaptive sampling scheme for WSNs, which aims at capturing accurately the behavior of the physical parameters of interest in each specific WSN context yet reducing the overhead in terms of sensing events. The sampling scheme relies on a set of low-complexity rules capable of auto-regulate the sensing frequency in accordance with each parameter behavior. As proof-of-concept, based on real environmental datasets, we provide statistical indicators illustrating the added value of the proposed sampling scheme in reducing sensing events without compromising the estimation accuracy of physical phenomena.This work has been supported by COMPETE: POCI-01-0145FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio
Enhanced ultrafast relaxation rate in the Weyl semimetal phase of MoTe2 measured by time- and angle-resolved photoelectron spectroscopy
MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2