11 research outputs found
Phase diagram of the two-dimensional Hubbard-Holstein model
The electron\u2013electron and electron\u2013phonon interactions play an important role in correlated materials, being key features for spin, charge and pair correlations. Thus, here we investigate their effects in strongly correlated systems by performing unbiased quantum Monte Carlo simulations in the square lattice Hubbard-Holstein model at half-filling. We study the competition and interplay between antiferromagnetism (AFM) and charge-density wave (CDW), establishing its very rich phase diagram. In the region between AFM and CDW phases, we have found an enhancement of superconducting pairing correlations, favouring (nonlocal) s-wave pairs. Our study sheds light over past inconsistencies in the literature, in particular the emergence of CDW in the pure Holstein model case
Recommended from our members
Manipulation of spin orientation via ferroelectric switching in Fe-doped Bi2 WO6 from first principles
Atomic-scale control of spins by electric fields is highly desirable for future technological applications. Magnetically doped Aurivillius-phase oxides present one route to achieve this, with magnetic ions substituted into the ferroelectric structure at dilute concentrations, resulting in spin-charge coupling. However, there has been minimal exploration of the ferroelectric switching pathways in this materials class, limiting predictions of the influence of an electric field on magnetic spins in the structure. Here, we determine the ferroelectric switching pathways of the end member of the Aurivillius phase family, Bi2WO6, using a combination of group theoretic analysis and density functional theory calculations. We find that in the ground state P21ab phase, a two-step switching pathway via C2 and Cm intermediate phases provides the lowest energy barrier. Considering iron substitutions on the W site in Bi2WO6, we determine the spin easy axis. By tracking the change in spin directionality during ferroelectric switching, we find that a 90∘ switch in the polarization direction leads to a 112° reorientation of the spin easy axis. The low-symmetry crystal-field environment of Bi2WO6 and magnetoelastic coupling on the magnetic dopant provide a route to spin control via an applied electric field
Recommended from our members
Doping evolution of spin and charge excitations in the Hubbard model
To shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, we examine the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achieved in the cuprates). These fundamental differences between the doping evolution of single- and multiparticle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multiparticle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description
Quantifying electronic correlation strength in a complex oxide: A combined DMFT and ARPES study of LaNiO3
The electronic correlation strength is a basic quantity that characterizes the physical properties of materials
such as transition metal oxides. Determining correlation strengths requires both precise definitions and a careful
comparison between experiment and theory. In this paper, we define the correlation strength via the magnitude
of the electron self-energy near the Fermi level. For the case of LaNiO3, we obtain both the experimental and
theoretical mass enhancements m/m by considering high resolution angle-resolved photoemission spectroscopy
(ARPES) measurements and density functional + dynamical mean field theory (DFT + DMFT) calculations. We
use valence-band photoemission data to constrain the free parameters in the theory and demonstrate a quantitative
agreement between the experiment and theory when both the realistic crystal structure and strong electronic
correlations are taken into account. In addition, by considering DFT + DMFT calculations on epitaxially strained
LaNiO3, we find a strain-induced evolution of m/m in qualitative agreement with trends derived from optics
experiments. These results provide a benchmark for the accuracy of the DFT + DMFT theoretical approach, and
can serve as a test case when considering other complex materials. By establishing the level of accuracy of the
theory, this work also will enable better quantitative predictions when engineering new emergent properties in nickelate heterostructures
Measurement of coherent polarons in the strongly coupled antiferromagnetically ordered iron-chalcogenide Fe1.02Te using angle-resolved photoemission spectroscopy.
The nature of metallicity and the level of electronic correlations in the antiferromagnetically ordered parent compounds are two important open issues for the iron-based superconductivity. We perform a temperature-dependent angle-resolved photoemission spectroscopy study of Fe(1.02)Te, the parent compound for iron chalcogenide superconductors. Deep in the antiferromagnetic state, the spectra exhibit a "peak-dip-hump" line shape associated with two clearly separate branches of dispersion, characteristics of polarons seen in manganites and lightly doped cuprates. As temperature increases towards the Néel temperature (T(N)), we observe a decreasing renormalization of the peak dispersion and a counterintuitive sharpening of the hump linewidth, suggestive of an intimate connection between the weakening electron-phonon (e-ph) coupling and antiferromagnetism. Our finding points to the highly correlated nature of the Fe(1.02)Te ground state featured by strong interactions among the charge, spin, and lattice and a good metallicity plausibly contributed by the coherent polaron motion
Charge density wave transition in single-layer titanium diselenide
A single molecular layer of titanium diselenide (TiSe(2)) is a promising material for advanced electronics beyond graphene—a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe(2) exhibits a charge density wave (CDW) transition at critical temperature T(C)=232±5 K, which is higher than the bulk T(C)=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T(C) in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The observed Bardeen-Cooper-Schrieffer (BCS) behaviour of the gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk