11 research outputs found

    Phase diagram of the two-dimensional Hubbard-Holstein model

    Get PDF
    The electron\u2013electron and electron\u2013phonon interactions play an important role in correlated materials, being key features for spin, charge and pair correlations. Thus, here we investigate their effects in strongly correlated systems by performing unbiased quantum Monte Carlo simulations in the square lattice Hubbard-Holstein model at half-filling. We study the competition and interplay between antiferromagnetism (AFM) and charge-density wave (CDW), establishing its very rich phase diagram. In the region between AFM and CDW phases, we have found an enhancement of superconducting pairing correlations, favouring (nonlocal) s-wave pairs. Our study sheds light over past inconsistencies in the literature, in particular the emergence of CDW in the pure Holstein model case

    Quantifying electronic correlation strength in a complex oxide: A combined DMFT and ARPES study of LaNiO3

    Full text link
    The electronic correlation strength is a basic quantity that characterizes the physical properties of materials such as transition metal oxides. Determining correlation strengths requires both precise definitions and a careful comparison between experiment and theory. In this paper, we define the correlation strength via the magnitude of the electron self-energy near the Fermi level. For the case of LaNiO3, we obtain both the experimental and theoretical mass enhancements m/m by considering high resolution angle-resolved photoemission spectroscopy (ARPES) measurements and density functional + dynamical mean field theory (DFT + DMFT) calculations. We use valence-band photoemission data to constrain the free parameters in the theory and demonstrate a quantitative agreement between the experiment and theory when both the realistic crystal structure and strong electronic correlations are taken into account. In addition, by considering DFT + DMFT calculations on epitaxially strained LaNiO3, we find a strain-induced evolution of m/m in qualitative agreement with trends derived from optics experiments. These results provide a benchmark for the accuracy of the DFT + DMFT theoretical approach, and can serve as a test case when considering other complex materials. By establishing the level of accuracy of the theory, this work also will enable better quantitative predictions when engineering new emergent properties in nickelate heterostructures

    Measurement of coherent polarons in the strongly coupled antiferromagnetically ordered iron-chalcogenide Fe1.02Te using angle-resolved photoemission spectroscopy.

    Full text link
    The nature of metallicity and the level of electronic correlations in the antiferromagnetically ordered parent compounds are two important open issues for the iron-based superconductivity. We perform a temperature-dependent angle-resolved photoemission spectroscopy study of Fe(1.02)Te, the parent compound for iron chalcogenide superconductors. Deep in the antiferromagnetic state, the spectra exhibit a "peak-dip-hump" line shape associated with two clearly separate branches of dispersion, characteristics of polarons seen in manganites and lightly doped cuprates. As temperature increases towards the Néel temperature (T(N)), we observe a decreasing renormalization of the peak dispersion and a counterintuitive sharpening of the hump linewidth, suggestive of an intimate connection between the weakening electron-phonon (e-ph) coupling and antiferromagnetism. Our finding points to the highly correlated nature of the Fe(1.02)Te ground state featured by strong interactions among the charge, spin, and lattice and a good metallicity plausibly contributed by the coherent polaron motion

    Charge density wave transition in single-layer titanium diselenide

    Full text link
    A single molecular layer of titanium diselenide (TiSe(2)) is a promising material for advanced electronics beyond graphene—a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe(2) exhibits a charge density wave (CDW) transition at critical temperature T(C)=232±5 K, which is higher than the bulk T(C)=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T(C) in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The observed Bardeen-Cooper-Schrieffer (BCS) behaviour of the gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk
    corecore