53 research outputs found
Recommended from our members
Inspection and repair considerations for downtime assessment of seismically isolated buildings
Data availability:
Data will be made available on request.Copyright © 2022 The Authors. This paper investigates the seismic downtime of seismically isolated buildings with steel moment or braced frames designed by the procedures of ASCE/SEI 7–16. The seismic isolation systems considered in this study are comprised of triple or double friction pendulum isolation bearings with and without moat walls. The seismic downtime is calculated from the damage to structural components and non-structural components, demolition and collapse of buildings. The downtime components (repair and inspection) are defined, and mathematical expressions are provided for the computation of downtime fragility curves, expected annual downtime, and economic losses due to the expected annual downtime. The procedure is then implemented using the results of nonlinear response history analysis from previous studies by the first author. The study demonstrates that the expected annual downtime of seismically isolated buildings is less than that of the comparable non-isolated buildings regardless of the seismic isolation systems used. Among the cases of seismically isolated buildings studied in this paper, it is found that the most effective structural system to mitigate long downtime is the seismically isolated building with seismic isolators with enhanced sizes and with braced frames that are designed to be minimally compliant with the seismic design requirements of ASCE/SEI 7–16
Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle
Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties
Development of microspheres for biomedical applications: a review
An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented
Evaluation of LHP® (1% hydrogen peroxide) cream versus petrolatum and untreated controls in open wounds in healthy horses: a randomized, blinded control study
<p>Abstract</p> <p>Background</p> <p>Treatment and protection of wounds in horses can be challenging; protecting bandages may be difficult to apply on the proximal extremities and the body. Unprotected wounds carry an increased risk of bacterial contamination and subsequent infection which can lead to delayed wound healing. Topical treatment with antimicrobials is one possibility to prevent bacterial colonization or infection, but the frequent use of antimicrobials ultimately leads to development of bacterial resistance which is an increasing concern in both human and veterinary medicine.</p> <p>Methods</p> <p>Standardized wounds were created in 10 Standardbred mares. Three wounds were made in each horse. Two wounds were randomly treated with LHP<sup>® </sup>or petrolatum and the third wound served as untreated control. All wounds were assessed daily until complete epithelization. Protocol data were recorded on day 2, 6, 11, 16, 21 and 28. Data included clinical scores for inflammation and healing, photoplanimetry for calculating wound areas and swab cytology to assess bacterial colonization and inflammation. Bacterial cultures were obtained on day 2, 6 and 16.</p> <p>Results</p> <p>Mean time to complete healing for LHP<sup>® </sup>treated wounds was 32 days (95%CI = 26.9-37.7). Mean time to complete healing for petrolatum and untreated control wounds were 41.6 days (95%CI = 36.2-47.0) and 44.0 days (95%CI = 38.6-49.4) respectively. Wound healing occurred significantly faster in LHP<sup>® </sup>wounds compared to both petrolatum (p = 0.0004) and untreated controls (p < 0.0001). There was no significant difference in time for healing between petrolatum and untreated controls. Total scores for bacteria and neutrophils were significantly (p < 0.0001) lower for LHP<sup>® </sup>treated wounds compared to petrolatum from day 16 and onwards. <it>Staphylococcus aureus </it>and <it>Streptococcus zooepidemicus </it>were only found in cultures from petrolatum treated wounds and untreated controls.</p> <p>Conclusions</p> <p>Treatment with LHP<sup>® </sup>reduced bacterial colonization and was associated with earlier complete wound healing. LHP<sup>® </sup>cream appears to be safe and effective for topical wound treatment or wound protection.</p
Tension stimulation drives tissue formation in scaffold-free systems
Scaffold-free systems have emerged as viable approaches for engineering load-bearing tissues. However, the tensile properties of engineered tissues have remained far below the values for native tissue. Here, by using self-assembled articular cartilage as a model to examine the effects of intermittent and continuous tension stimulation on tissue formation, we show that the application of tension alone, or in combination with matrix remodelling and synthesis agents, leads to neocartilage with tensile properties approaching those of native tissue. Implantation of tension-stimulated tissues results in neotissues that are morphologically reminiscent of native cartilage. We also show that tension stimulation can be translated to a human cell source to generate anisotropic human neocartilage with enhanced tensile properties. Tension stimulation, which results in nearly sixfold improvements in tensile properties over unstimulated controls, may allow the engineering of mechanically robust biological replacements of native tissue
Meat and Nicotinamide:A Causal Role in Human Evolution, History, and Demographics
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B 3 /nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the ‘de novo’ tryptophan-to-kynurenine-nicotinamide ‘immune tolerance’ pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital
Recommended from our members
Topographic variations in biomechanical and biochemical properties in the ankle joint: An in vitro bovine study evaluating native and engineered cartilage
© 2014 by the Arthroscopy Association of North America. Purpose: The purposes of this study were to identify differences in the biomechanical and biochemical properties among the articulating surfaces of the ankle joint and to evaluate the functional and biological properties of engineered neocartilage generated using chondrocytes from different locations in the ankle joint. Methods: The properties of the different topographies within the ankle joint (tibial plafond, talar dome, and distal fibula) were evaluated in 28 specimens using 7 bovine ankles; the femoral condyle was used as a control. Chondrocytes from the same locations were used to form 28 neocartilage constructs by tissue engineering using an additional 7 bovine ankles. The functional properties of neocartilage were compared with native tissue values. Results: Articular cartilage from the tibial plafond, distal fibula, talar dome, and femoral condyle exhibited Young modulus values of 4.8 ± 0.5 MPa, 3.9 ± 0.1 MPa, 1.7 ± 0.2 MPa, and 4.0 ± 0.5 MPa, respectively. The compressive properties of the corresponding tissues were 370 ± 22 kPa, 242 ± 18 kPa, 255 ± 26 kPa, and 274 ± 18 kPa, respectively. The tibial plafond exhibited 3-fold higher tensile properties and 2-fold higher compressive and shear moduli compared with its articulating talar dome; the same disparity was observed in neocartilage. Similar trends were detected in biochemical data for both native and engineered tissues. Conclusions: The cartilage properties of the various topographic locations within the ankle are significantly different. In particular, the opposing articulating surfaces of the ankle have significantly different biomechanical and biochemical properties. The disparity between tibial plafond and talar dome cartilage and chondrocytes warrants further evaluation in clinical studies to evaluate their exact role in the pathogenesis of ankle lesions. Clinical Relevance: Therapeutic modalities for cartilage lesions need to consider the exact topographic source of the cells or cartilage grafts used. Furthermore, the capacity of generating neocartilage implants from location-specific chondrocytes of the ankle joint may be used in the future as a tool for the treatment of chondral lesions
Recommended from our members
Topographic variations in biomechanical and biochemical properties in the ankle joint: An in vitro bovine study evaluating native and engineered cartilage
Purpose: The purposes of this study were to identify differences in the biomechanical and biochemical properties among the articulating surfaces of the ankle joint and to evaluate the functional and biological properties of engineered neocartilage generated using chondrocytes from different locations in the ankle joint. Methods: The properties of the different topographies within the ankle joint (tibial plafond, talar dome, and distal fibula) were evaluated in 28 specimens using 7 bovine ankles; the femoral condyle was used as a control. Chondrocytes from the same locations were used to form 28 neocartilage constructs by tissue engineering using an additional 7 bovine ankles. The functional properties of neocartilage were compared with native tissue values. Results: Articular cartilage from the tibial plafond, distal fibula, talar dome, and femoral condyle exhibited Young modulus values of 4.8 ± 0.5 MPa, 3.9 ± 0.1 MPa, 1.7 ± 0.2 MPa, and 4.0 ± 0.5 MPa, respectively. The compressive properties of the corresponding tissues were 370 ± 22 kPa, 242 ± 18 kPa, 255 ± 26 kPa, and 274 ± 18 kPa, respectively. The tibial plafond exhibited 3-fold higher tensile properties and 2-fold higher compressive and shear moduli compared with its articulating talar dome; the same disparity was observed in neocartilage. Similar trends were detected in biochemical data for both native and engineered tissues. Conclusions: The cartilage properties of the various topographic locations within the ankle are significantly different. In particular, the opposing articulating surfaces of the ankle have significantly different biomechanical and biochemical properties. The disparity between tibial plafond and talar dome cartilage and chondrocytes warrants further evaluation in clinical studies to evaluate their exact role in the pathogenesis of ankle lesions. Clinical Relevance: Therapeutic modalities for cartilage lesions need to consider the exact topographic source of the cells or cartilage grafts used. Furthermore, the capacity of generating neocartilage implants from location-specific chondrocytes of the ankle joint may be used in the future as a tool for the treatment of chondral lesions
- …