16 research outputs found

    Order through Disorder: Hyper-Mobile C-Terminal Residues Stabilize the Folded State of a Helical Peptide. A Molecular Dynamics Study

    Get PDF
    Conventional wisdom has it that the presence of disordered regions in the three-dimensional structures of polypeptides not only does not contribute significantly to the thermodynamic stability of their folded state, but, on the contrary, that the presence of disorder leads to a decrease of the corresponding proteins' stability. We have performed extensive 3.4 碌s long folding simulations (in explicit solvent and with full electrostatics) of an undecamer peptide of experimentally known helical structure, both with and without its disordered (four residue long) C-terminal tail. Our simulations clearly indicate that the presence of the apparently disordered (in structural terms) C-terminal tail, increases the thermodynamic stability of the peptide's folded (helical) state. These results show that at least for the case of relatively short peptides, the interplay between thermodynamic stability and the apparent structural stability can be rather subtle, with even disordered regions contributing significantly to the stability of the folded state. Our results have clear implications for the understanding of peptide energetics and the design of foldable peptides

    In vitro and in vivo characterization of poractant alfa supplemented with budesonide for safe and effective intratracheal administration

    No full text
    BackgroundThe intratracheal (IT) administration of budesonide using surfactant as a vehicle has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD) in preterm infants. The objective of this study was to characterize the in vitro characteristics and in vivo safety and efficacy of the extemporaneous combination of budesonide and poractant alfa.MethodsThe stability, minimum surface tension, and viscosity of the preparation were evaluated by means of high-performance liquid chromatography (HPLC), Wilhelmy balance, and Rheometer, respectively. The safety and efficacy of the IT administration of the mixture were tested in two respiratory distress syndrome (RDS) animal models: twenty-seventh day gestational age premature rabbits and surfactant-depleted adult rabbits.ResultsA pre-formulation trial identified a suitable procedure to ensure the homogeneity and stability of the formulation. Wilhelmy Balance tests clarified that budesonide supplementation has no detrimental effect on poractant alfa surface tension activity. The addition of budesonide to poractant alfa did not affect the physiological response to surfactant treatment in both RDS animal models, and was associated to a significant reduction of lung inflammation in surfactant-depleted rabbits.ConclusionOur in vitro and in vivo analysis suggests that the IT administration of a characterized extemporaneous combination of poractant alfa and budesonide is a safe and efficacious procedure in the context of RDS
    corecore