26 research outputs found

    ATP release via anion channels

    Get PDF
    ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed

    Once upon a time the cell membranes: 175 years of cell boundary research

    Get PDF

    Antinociceptive activity of chemical congeners of improgan: optimization of side chain length leads to the discovery of a new, potent, non-opioid analgesic

    No full text
    Improgan is a chemical congener of the H2 antagonist cimetidine which shows the profile of a highly effective analgesic when administered directly into the CNS. Although the improgan receptor is unknown, improgan activates analgesic pathways which are independent of opioids, but may utilize cannabinoid mechanisms. To discover selective, potent, improgan-like drugs, seven compounds chemically related to improgan were synthesized and tested for antinociceptive activity in rats after intracerebroventricular (icv) administration. Among a series of improgan congeners in which the alkyl chain length of improgan ((eCH2)3e) was varied, five compounds showed full agonist antinociceptive activity with potencies greater than that of improgan. VUF5420 (containing (eCH2)4e, EC50 ¼ 86.1 nmol) produced maximal antinociceptive activity after doses which showed no motor impairment or other obvious toxicity, and was 2.3-fold more potent than improgan (EC50 ¼ 199.5 nmol). As found previously with improgan, VUF5420-induced antinociception was unaffected by administration of the opioid antagonist naltrexone, but was inhibited by the CB1 antagonist SR141716A, suggesting a non-opioid, cannabinoid-related analgesic action. However, VUF5420 showed very low affinity (Kd z 10 mM) on CB1-receptor activation of 35S-GTPgS binding, indicating that this drug does not directly interact with the CB1 receptor in vivo. The present results show that VUF5420 is a high potency, improgan-like, non-opioid analgesic which may indirectly activate cannabinoid pain-relieving mechanisms
    corecore