1,578 research outputs found

    Symmetric Hyperbolic System in the Self-dual Teleparallel Gravity

    Full text link
    In order to discuss the well-posed initial value formulation of the teleparallel gravity and apply it to numerical relativity a symmetric hyperbolic system in the self-dual teleparallel gravity which is equivalent to the Ashtekar formulation is posed. This system is different from the ones in other works by that the reality condition of the spatial metric is included in the symmetric hyperbolicity and then is no longer an independent condition. In addition the constraint equations of this system are rather simpler than the ones in other works.Comment: 8 pages, no figure

    Thermalization of an impurity cloud in a Bose-Einstein condensate

    Full text link
    We study the thermalization dynamics of an impurity cloud inside a Bose-Einstein condensate at finite temperature, introducing a suitable Boltzmann equation. Some values of the temperature and of the initial impurity energy are considered. We find that, below the Landau critical velocity, the macroscopic population of the initial impurity state reduces its depletion rate. For sufficiently high velocities the opposite effect occurs. For appropriate parameters the collisions cool the condensate. The maximum cooling per impurity atom is obtained with multiple collisions.Comment: 4 pages 6 figure

    Potomac Fever Update

    Get PDF

    Time-frequency detection algorithm for gravitational wave bursts

    Get PDF
    An efficient algorithm is presented for the identification of short bursts of gravitational radiation in the data from broad-band interferometric detectors. The algorithm consists of three steps: pixels of the time-frequency representation of the data that have power above a fixed threshold are first identified. Clusters of such pixels that conform to a set of rules on their size and their proximity to other clusters are formed, and a final threshold is applied on the power integrated over all pixels in such clusters. Formal arguments are given to support the conjecture that this algorithm is very efficient for a wide class of signals. A precise model for the false alarm rate of this algorithm is presented, and it is shown using a number of representative numerical simulations to be accurate at the 1% level for most values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR

    Can brewer-sponsored ‘drink responsibly’ warning message be effective without alcohol policies in Nigeria?

    Get PDF
    Alcohol availability, use and misuse and their related problems are rising in many parts of the African continent and this has been attributed to many factors such as non-existent or ineffective regulatory measures. In contemporary Nigeria, while a culture of intoxication is growing, there are no regulatory measures in the form of alcohol policies to reduce it. What exists is brewer-sponsored self-regulation. This paper therefore, critically analyses this self-imposed 'drink responsibly' warning message, arguing that because responsible drinking messages are strategically designed to serve the interest of alcohol industries, it cannot be effective. The paper further argues that because there are no definitions of standard drinks and where alcohol by volume (ABV) is scarcely inscribed on product labels of alcoholic beverages, such message will remain ineffective. Therefore, it recommends that an urgent step should be taken by the government to formulate and implement comprehensive evidence-based alcohol policies in Nigeria

    The Evidence for a Pentaquark Signal and Kinematic Reflections

    Full text link
    Several recent experiments have reported evidence for a narrow baryon resonance with positive strangeness (Θ+\Theta^+) at a mass of 1.54 GeV/c2c^2. Baryons with S=+1S=+1 cannot be conventional qqqqqq states and the reports have thus generated much theoretical speculation about the nature of possible S=+1S=+1 baryons, including a 5-quark, or pentaquark, interpretation. We show that narrow enhancements in the K+nK^+n effective mass spectrum can be generated as kinematic reflections resulting from the decay of mesons, such as the f2(1275)f_2(1275), the a2(1320)a_2(1320) and the ρ3(1690)\rho_3(1690).Comment: 4 pages, 4 figure

    Higher-order mutual coherence of optical and matter waves

    Get PDF
    We use an operational approach to discuss ways to measure the higher-order cross-correlations between optical and matter-wave fields. We pay particular attention to the fact that atomic fields actually consist of composite particles that can easily be separated into their basic constituents by a detection process such as photoionization. In the case of bosonic fields, that we specifically consider here, this leads to the appearance in the detection signal of exchange contributions due to both the composite bosonic field and its individual fermionic constituents. We also show how time-gated counting schemes allow to isolate specific contributions to the signal, in particular involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure

    Modulated Amplitude Waves in Bose-Einstein Condensates

    Full text link
    We analyze spatio-temporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits (``modulated amplitude waves'') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations.Comment: 5 pages, 4 figs, revtex, final form of paper, to appear in PRE (forgot to include \bibliography command in last update, so this is a correction of that; the bibliography is hence present again

    On the transverse mode of an atom laser

    Full text link
    The transverse mode of an atom laser beam that is outcoupled from a Bose-Einstein condensate is investigated and is found to be strongly determined by the mean--field interaction of the laser beam with the condensate. Since for repulsive interactions the geometry of the coupling scheme resembles an interferometer in momentum space, the beam is found show filamentation. Observation of this effect would prove the transverse coherence of an atom laser beam.Comment: 4 pages, 4 figure

    Momentum-Transfer to and Elementary-Excitations of a Bose-Einstein Condensate by a Time-Dependent Optical Potential

    Full text link
    We present results of calculations on Bose-Einstein condensed 87^{87}Rb atoms subjected to a moving standing-wave light-potential of the form VL(z,t)=V0(t)cos(qzωt)V_L(z,t) = V_0(t) \cos(q z-\omega t). We calculate the mean-field dynamics (the order paramter) of the condensate and determine the resulting condensate momentum in the zz direction, Pz(q,ω,V0,tp)P_z(q,\omega,V_0,t_p), where V0V_0 is the peak optical potential strength and tpt_p is the pulse duration. Although the local density approximation for the Bogoliubov excitation spectral distribution is a good approximation for very low optical intensities, long pulse duration and sufficiently large values of the wavevector qq of the light-potential, for small qq, short duration pulses, or for not-so-low intensities, the local density perturbative description of the excitation spectrum breaks down badly, as shown by our results.Comment: 8 pages, 7 figure
    corecore