36 research outputs found

    Wave Propagation in Gravitational Systems: Late Time Behavior

    Get PDF
    It is well-known that the dominant late time behavior of waves propagating on a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have also been studied. This paper presents a systematic treatment of the tail phenomenon for a broad class of models via a Green's function formalism and establishes the following. (i) The tail is governed by a cut of the frequency Green's function G~(ω)\tilde G(\omega) along the −-~Im~ω\omega axis, generalizing the Schwarzschild result. (ii) The ω\omega dependence of the cut is determined by the asymptotic but not the local structure of space. In particular it is independent of the presence of a horizon, and has the same form for the case of a star as well. (iii) Depending on the spatial asymptotics, the late time decay is not necessarily a power law in time. The Schwarzschild case with a power-law tail is exceptional among the class of the potentials having a logarithmic spatial dependence. (iv) Both the amplitude and the time dependence of the tail for a broad class of models are obtained analytically. (v) The analytical results are in perfect agreement with numerical calculations

    Exactly solvable path integral for open cavities in terms of quasinormal modes

    Full text link
    We evaluate the finite-temperature Euclidean phase-space path integral for the generating functional of a scalar field inside a leaky cavity. Provided the source is confined to the cavity, one can first of all integrate out the fields on the outside to obtain an effective action for the cavity alone. Subsequently, one uses an expansion of the cavity field in terms of its quasinormal modes (QNMs)-the exact, exponentially damped eigenstates of the classical evolution operator, which previously have been shown to be complete for a large class of models. Dissipation causes the effective cavity action to be nondiagonal in the QNM basis. The inversion of this action matrix inherent in the Gaussian path integral to obtain the generating functional is therefore nontrivial, but can be accomplished by invoking a novel QNM sum rule. The results are consistent with those obtained previously using canonical quantization.Comment: REVTeX, 26 pages, submitted to Phys. Rev.

    Scaling of impact fragmentation near the critical point

    Full text link
    We investigated two-dimensional brittle fragmentation with a flat impact experimentally, focusing on the low impact energy region near the fragmentation-critical point. We found that the universality class of fragmentation transition disagreed with that of percolation. However, the weighted mean mass of the fragments could be scaled using the pseudo-control parameter multiplicity. The data for highly fragmented samples included a cumulative fragment mass distribution that clearly obeyed a power-law. The exponent of this power-law was 0.5 and it was independent of sample size. The fragment mass distributions in this regime seemed to collapse into a unified scaling function using weighted mean fragment mass scaling. We also examined the behavior of higher order moments of the fragment mass distributions, and obtained multi-scaling exponents that agreed with those of the simple biased cascade model.Comment: 6 pages, 6 figure

    Strong Universality in Forced and Decaying Turbulence

    Full text link
    The weak version of universality in turbulence refers to the independence of the scaling exponents of the nnth order strcuture functions from the statistics of the forcing. The strong version includes universality of the coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbulence. The exponents {\em and} the normalized coefficients are time independent in decaying turbulence, forcing independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also the case for Navier-Stokes turbulence.Comment: RevTex 4, 10 pages, 5 Figures (included), 1 Table; PRE, submitte

    Scalar wave propagation in topological black hole backgrounds

    Get PDF
    We consider the evolution of a scalar field coupled to curvature in topological black hole spacetimes. We solve numerically the scalar wave equation with different curvature-coupling constant Ο\xi and show that a rich spectrum of wave propagation is revealed when Ο\xi is introduced. Relations between quasinormal modes and the size of different topological black holes have also been investigated.Comment: 26 pages, 18 figure

    Radiative falloff in Einstein-Straus spacetime

    Full text link
    The Einstein-Straus spacetime describes a nonrotating black hole immersed in a matter-dominated cosmology. It is constructed by scooping out a spherical ball of the dust and replacing it with a vacuum region containing a black hole of the same mass. The metric is smooth at the boundary, which is comoving with the rest of the universe. We study the evolution of a massless scalar field in the Einstein-Straus spacetime, with a special emphasis on its late-time behavior. This is done by numerically integrating the scalar wave equation in a double-null coordinate system that covers both portions (vacuum and dust) of the spacetime. We show that the field's evolution is governed mostly by the strong concentration of curvature near the black hole, and the discontinuity in the dust's mass density at the boundary; these give rise to a rather complex behavior at late times. Contrary to what it would do in an asymptotically-flat spacetime, the field does not decay in time according to an inverse power-law.Comment: ReVTeX, 12 pages, 14 figure

    Shell Model for Drag Reduction with Polymer Additive in Homogeneous Turbulence

    Full text link
    Recent direct numerical simulations of the FENE-P model of non-Newtonian hydrodynamics revealed that the phenomenon of drag reduction by polymer additives exists (albeit in reduced form) also in homogeneous turbulence. We introduce here a simple shell model for homogeneous viscoelastic flows that recaptures the essential observations of the full simulations. The simplicity of the shell model allows us to offer a transparent explanation of the main observations. It is shown that the mechanism for drag reduction operates mainly on the large scales. Understanding the mechanism allows us to predict how the amount of drag reduction depends of the various parameters in the model. The main conclusion is that drag reduction is not a universal phenomenon, it peaks in a window of parameters like Reynolds number and the relaxation rate of the polymer

    Approach to the extremal limit of the Schwarzschild-de Sitter black hole

    Full text link
    The quasinormal-mode spectrum of the Schwarzschild-de Sitter black hole is studied in the limit of near-equal black-hole and cosmological radii. It is found that the mode_frequencies_ agree with the P"oschl-Teller approximation to one more order than previously realized, even though the effective_potential_ does not. Whether the spectrum approaches the limiting one uniformly in the mode index is seen to depend on the chosen units (to the order investigated). A perturbation framework is set up, in which these issues can be studied to higher order in future.Comment: REVTeX4, 4pp., no figures. N.B. "Alec" is my first, and "Maassen van den Brink" my family name. v2: added numerical verificatio

    Late-Time Tails of Wave Propagation in Higher Dimensional Spacetimes

    Full text link
    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power-law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t^[-(2l+D-2)] at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd, it does not depend on the presence of a black hole in the spacetime. Indeed this tails is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t^[-(2l+3D-8)], and this time there is no contribution from the flat background. This power-law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, the t^[-(2l+3)] behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late time behaviour of any field if the large extra dimensions are large enough.Comment: 6 pages, 3 figures, RevTeX4. Version to appear in Rapid Communications of Physical Review

    Quasinormal modes for the SdS black hole : an analytical approximation scheme

    Full text link
    Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter (SdS) black hole are investigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this approximate model in the limit when black hole mass is much smaller than the radius of curvature of the spacetime. The model mirrors some striking features observed in numerical studies of time behaviour of scalar perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two different time scales, proportional to the surface gravities of the black hole and cosmological horizons respectively. These quasinormal modes are not complete - another feature observed in numerical studies. Refinements of this model to yield more accurate quantitative agreement with numerical studies are discussed. Further investigations of this model are outlined, which would provide a valuable insight into time behaviour of perturbations in the SdS spacetime.Comment: 12 pages, revtex, refs added and discussion expanded, version to appear in Phys. Rev.
    corecore