13 research outputs found

    Modeling flat to slant fracture transition using the computational cell methodology

    No full text
    International audienceMacroscopic mode I ductile crack propagation in metallic sheets or plates often starts in mode I as a flat triangle (coplanar with the precrack) whose normal corresponds to the loading direction. After some limited extension, the crack becomes slanted and propagates under local mixed mode I/III. Modeling and understanding this phenomenon is challenging. In this work, the "computational cell" methodology proposed in [1], which uses a predefined crack path, is used to study flat to slant fracture transition. The energy dissipation rate is studied as a function of the assumed crack tilt angle. It is shown that a minimum is always reached for an angle equal to 45°. This correlates well with the variation of the crack tip opening angle (CTOA) or the mean plastic deformation along the crack path. Stress and strain states in the stable tearing region hardly depend on the assumed tilt angle. A parametric study shows that flat to slant fracture transition is less likely to occur in materials having high work hardening and favored if additional damage is caused by the local stress/strain state (plane strain, low Lode parameter) in the stable tearing region

    Stress-strain curves of flip-chip solder balls based on finite-element modeling of thermal displacements measured by electronic speckle pattern interferometry

    No full text
    Electronic speckle pattern interferometry (ESPI) was applied to noncontact, real-time evaluation of thermal deformation in a flip-chip solder joint. To measure the deformation of such tiny components as the solder balls in the flip-chip, the spatial resolution of ESPI was increased to submicron scale by magnifying the areas studied. Experimental-computational procedures were developed to obtain stress-strain curves for solder balls in the flip-chip based on finite-element modeling (FEM) of in-plane ESPI thermal displacement data. The stress-strain curve obtained for the flip-chip solder was compared with those for bulk solder. The microstructure was also studied to clarify the stress-strain curve results.open2

    IG-MYC+ neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas

    No full text
    The WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue notes instances of Burkitt lymphoma/leukemia (BL) with IG-MYC rearrangement displaying a B-cell precursor immunophenotype (termed herein "preBLL"). To characterize the molecular pathogenesis of preBLL, we investigated 13 preBLL cases (including 1 cell line), of which 12 were analyzable using genome, exome, and targeted sequencing, imbalance mapping, and DNA methylation profiling. In 5 patients with reads across the IG-MYC breakpoint junctions, we found evidence that the translocation derived from an aberrant VDJ recombination, as is typical for IG translocations arising in B-cell precursors. Genomic changes like biallelic IGH translocations or VDJ rearrangements combined with translocation into the VDJ region on the second allele, potentially preventing expression of a productive immunoglobulin, were detected in 6 of 13 cases. We did not detect mutations in genes frequently altered in BL, but instead found activating NRAS and/or KRAS mutations in 7 of 12 preBLLs. Gains on 1q, recurrent in BL and preB lymphoblastic leukemia/lymphoma (pB-ALL/LBL), were detected in 7 of 12 preBLLs. DNA methylation profiling showed preBLL to cluster with precursor B cells and pB-ALL/LBL, but apart from BL. We conclude that preBLL genetically and epigenetically resembles pB-ALL/LBL rather than BL. Therefore, we propose that preBLL be considered as a pB-ALL/LBL with recurrent genetic abnormalities
    corecore