3 research outputs found

    A perturbative approach to non-Markovian stochastic Schr\"odinger equations

    Full text link
    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian Stochastic Schr\"odinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two level atom immersed in a environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensembled average state ρred(t)\rho_{\rm red}(t) approach the exact reduced state found via Imamo\=glu's enlarged system method [Phys. Rev. A. 50, 3650 (1994)].Comment: 17 pages, 4 figure

    The interpretation of non-Markovian stochastic Schr\"odinger equations as a hidden-variable theory

    Full text link
    Do diffusive non-Markovian stochastic Schr\"odinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t)z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t)z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system ``conditioned'' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit.Comment: 9 page
    corecore