3 research outputs found
A perturbative approach to non-Markovian stochastic Schr\"odinger equations
In this paper we present a perturbative procedure that allows one to
numerically solve diffusive non-Markovian Stochastic Schr\"odinger equations,
for a wide range of memory functions. To illustrate this procedure numerical
results are presented for a classically driven two level atom immersed in a
environment with a simple memory function. It is observed that as the order of
the perturbation is increased the numerical results for the ensembled average
state approach the exact reduced state found via
Imamo\=glu's enlarged system method [Phys. Rev. A. 50, 3650 (1994)].Comment: 17 pages, 4 figure
The interpretation of non-Markovian stochastic Schr\"odinger equations as a hidden-variable theory
Do diffusive non-Markovian stochastic Schr\"odinger equations (SSEs) for open
quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A
66, 012108 (2002)] we investigated this question using the orthodox
interpretation of quantum mechanics. We found that the solution of a
non-Markovian SSE represents the state the system would be in at that time if a
measurement was performed on the environment at that time, and yielded a
particular result. However, the linking of solutions at different times to make
a trajectory is, we concluded, a fiction. In this paper we investigate this
question using the modal (hidden variable) interpretation of quantum mechanics.
We find that the noise function appearing in the non-Markovian SSE can
be interpreted as a hidden variable for the environment. That is, some chosen
property (beable) of the environment has a definite value even in the
absence of measurement on the environment. The non-Markovian SSE gives the
evolution of the state of the system ``conditioned'' on this environment hidden
variable. We present the theory for diffusive non-Markovian SSEs that have as
their Markovian limit SSEs corresponding to homodyne and heterodyne detection,
as well as one which has no Markovian limit.Comment: 9 page