18 research outputs found

    Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins

    No full text
    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most polyextreme habitats on Earth. In comparison to microbial activities occurring within the haloclines and brines of these unusual water column habitats near the Mediterranean seafloor, relatively little is known about microbial metabolic activities in the underlying sediments. In addition, it is not known whether activities are shaped by the unique chemistries of the different DHAB brines and whether evidence exists for active microbial eukaryotes in those sediments. Metatranscriptome analysis was applied to sediment samples collected using ROV Jason from underneath the haloclines of Urania, Discovery and L'Atalante DHABs and a control site. We report on expression of genes associated with sulfur and nitrogen cycling, putative osmolyte biosynthetic pathways and ion transporters, trace metal detoxification, selected eukaryotic activities (particularly of fungi), microbe-microbe interactions, and motility in sediments underlying the haloclines of three DHABs. Relative to our control sediment sample collected outside of Urania Basin, microbial communities (including eukaryotes) in the Urania and Discovery DHAB sediments showed upregulation of expressed genes associated with nitrogen transformations, osmolyte biosynthesis, heavy metals resistance and metabolism, eukaryotic organelle functions, and cell-cell interactions. Sediments underlying DHAB haloclines that have cumulative physico-chemical stressors within the limits of tolerance for microoorganisms can therefore be hotspots of activity in the deep Mediterranean Sea. © 2016 International Society for Microbial Ecology All rights reserved

    Temperature effects on cation transport in hereditary stomatocytosis and allied disorders

    No full text
    The conditions known as ‘hereditary stomatocytosis and allied syndromes’ comprise a group of dominantly inherited human haemolytic anaemias characterized by a plasma membrane ‘leak’ to the univalent cations Na and K, an example of a small but growing group of diseases where pathology can be directly attributed to abnormal membrane transport. A number of case reports in the different variants have alluded to temperature-related phenomena, including loss of K on storage at room temperature (giving ‘pseudohyperkalaemia’) and lysis of cells when stored in the cold (‘cryohydrocytosis’). This review collects together published studies of these temperature effects, which show very major differences in the ‘leak’ K transport. Two main variations on normal emerge: a ‘shallow slope’ type, in which the flux shows an abnormally low dependence on temperature in the range 37–20°C, and ‘high minimum’, in which the minimum in this flux, which occurs in normal cells at 8°C, is shifted up to 23°C. These temperature studies provide a powerful method for phenotypic characterization
    corecore