35 research outputs found

    Data descriptor: a global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. (TABLE) Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013'). This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product. This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Computer-aided Diagnosis in Breast MRI: Do Adjunct Features Derived from T2-weighted Images Improve Classification of Breast Masses?

    No full text
    Abstract. In the field of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of breast cancer, current research efforts in computer-aided diagnosis (CADx) are mainly focused on the temporal series of T1-weighted images acquired during uptake of a contrast agent, processing morphological and kinetic information. Although static T2weighted images are usually part of DCE-MRI protocols, they are seldom used in CADx systems. The aim of this work was to evaluate to what extent T2-weighted images provide complementary information to a CADx system, improving its performance for the task of discriminating benign breast masses from life-threatening carcinomas. In a preliminary study considering 64 masses, inclusion of lesion features derived from T2weighted images increased the classification performance from Az=0.94 to Az=0.99.

    Image Dissimilarity-Based Quantification of Lung Disease from CT

    No full text
    In this paper, we propose to classify medical images using dissimilarities computed between collections of regions of interest. The images are mapped into a dissimilarity space using an image dissimilarity measure, and a standard vector space-based classifier is applied in this space. The classification output of this approach can be used in computer aided-diagnosis problems where the goal is to detect the presence of abnormal regions or to quantify the extent or severity of abnormalities in these regions. The proposed approach is applied to quantify chronic obstructive pulmonary disease in computed tomography (CT) images, achieving an area under the receiver operating characteristic curve of 0.817. This is significantly better compared to combining individual region classifications into an overall image classification, and compared to common computerized quantitative measures in pulmonary CT

    Dissimilarity-Based Classification of Anatomical Tree Structures

    No full text
    Abstract. A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment between the branch feature vectors representing those trees. Hereby, localized information in the branches is collectively used in classification and variations in feature values across the tree are taken into account. An approximate anatomical correspondence between matched branches can be achieved by including anatomical features in the branch feature vectors. The proposed approach is applied to classify airway trees in computed tomography images of subjects with and without chronic obstructive pulmonary disease (COPD). Using the wall area percentage (WA%), a common measure of airway abnormality in COPD, as well as anatomical features to characterize each branch, an area under the receiver operating characteristic curve of 0.912 is achieved. This is significantly better than computing the average WA%
    corecore