6 research outputs found

    The true identity of the supposed giant fossil spider Megarachne

    No full text
    Megarachne servinei from the Permo-Carboniferous Bajo de Véliz Formation of San Luis Province, Argentina (32° 17′ S, 65° 25′ E), was described as a giant mygalomorph spider (‘tarantula’) and, with its body length of 339 mm, the largest known spider ever to have lived on Earth. Its identification as a spider was based on interpretations of the shape of the carapace, the position of the eye tubercle, the anterior protrusion of the carapace as a pair of chelicerae, and the posterior circular structure as the abdomen. X-radiography revealed possible morphology hidden in the matrix: cheliceral fangs, sternum, labium and coxae, and so a reconstruction of Megarachne as a giant spider was presented. Difficulties with the interpretation (unusual cuticular ornament, suture dividing the carapace and spade-like anterior border of the chelicera), together with non-preservation of synapomorphies of Araneae, provoked debate about its interpretation as a spider. Now, the holotype and a new specimen have become available for study. Megarachne is shown to be a bizarre eurypterid (‘sea-scorpion’), similar to rare forms known from Carboniferous rocks of Scotland and South Africa, and is the most complete eurypterid so far recorded from Carboniferous strata of South America

    Microanatomy of Early Devonian book lungs

    No full text
    The book lungs of an exceptionally preserved fossil arachnid (Trigonotarbida) from the Early Devonian (approx. 410 Myr ago) Rhynie cherts of Scotland were studied using a non-destructive imaging technique. Our three-dimensional modelling of fine structures, based on assembling successive images made at different focal planes through the translucent chert matrix, revealed for the first time fossil trabeculae: tiny cuticular pillars separating adjacent lung lamellae and creating a permanent air space. Trabeculae thus show unequivocally that trigonotarbids were fully terrestrial and that the microanatomy of the earliest known lungs is indistinguishable from that in modern Arachnida. A recurrent controversy in arachnid evolution is whether the similarity between the book lungs of Pantetrapulmonata (i.e. spiders, trigonotarbids, etc.) and those of scorpions is a result of convergence. Drawing on comparative studies of extant taxa, we have identified explicit characters (trabeculae, spines on the lamellar edge) shared by living and fossil arachnid respiratory organs, which support the hypothesis that book lungs were derived from a single, common, presumably terrestrial, ancestor

    Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing

    No full text
    corecore