16 research outputs found

    Long-Term Persistence of Exhausted CD8 T Cells in Chronic Infection Is Regulated by MicroRNA-155

    Get PDF
    Persistent viral infections and tumors drive development of exhausted T (TEX) cells. In these settings, TEX cells establish an important host-pathogen or host-tumor stalemate. However, TEX cells erode over time, leading to loss of pathogen or cancer containment. We identified microRNA (miR)-155 as a key regulator of sustained TEX cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection. Genetic deficiency of miR-155 ablated CD8 T cell responses during chronic infection. Conversely, enhanced miR-155 expression promoted expansion and long-term persistence of TEX cells. However, rather than strictly antagonizing exhaustion, miR-155 promoted a terminal TEX cell subset. Transcriptional profiling identified coordinated control of cell signaling and transcription factor pathways, including the key AP-1 family member Fosl2. Overexpression of Fosl2 reversed the miR-155 effects, identifying a link between miR-155 and the AP-1 transcriptional program in regulating TEX cells. Thus, we identify a mechanism of miR-155 regulation of TEX cells and a key role for Fosl2 in T cell exhaustion. During persistent viral infections, exhausted T cells (TEX) erode quantitatively and qualitatively and therefore fail to provide protection. Stelekati et al. identified microRNA (miR)-155 as a key molecule that can enhance and sustain TEX responses long-term during chronic viral infection

    Immune Memory and Exhaustion: Clinically Relevant Lessons from the LCMV Model.

    No full text
    The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches

    Defining 'T cell exhaustion'.

    Get PDF
    'T cell exhaustion' is a broad term that has been used to describe the response of T cells to chronic antigen stimulation, first in the setting of chronic viral infection but more recently in response to tumours. Understanding the features of and pathways to exhaustion has crucial implications for the success of checkpoint blockade and adoptive T cell transfer therapies. In this Viewpoint article, 18 experts in the field tell us what exhaustion means to them, ranging from complete lack of effector function to altered functionality to prevent immunopathology, with potential differences between cancer and chronic infection. Their responses highlight the dichotomy between terminally differentiated exhausted T cells that are TCF1 <sup>-</sup> and the self-renewing TCF1 <sup>+</sup> population from which they derive. These TCF1 <sup>+</sup> cells are considered by some to have stem cell-like properties akin to memory T cell populations, but the developmental relationships are unclear at present. Recent studies have also highlighted an important role for the transcriptional regulator TOX in driving the epigenetic enforcement of exhaustion, but key questions remain about the potential to reverse the epigenetic programme of exhaustion and how this might affect the persistence of T cell populations

    Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia

    No full text
    Tolerance to self-antigens prevents the elimination of cancer by the immune system 1,2 . We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45RO-CD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1-CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies
    corecore