130 research outputs found

    Strings in extremal BTZ black holes

    Full text link
    We study the spectrum of the worldsheet theory of the bosonic closed string in the massless and extremal rotating BTZ black holes. We use a hyperbolic Wakimoto representation of the SL(2,R) currents to construct vertex operators for the string modes on these backgrounds. We argue that there are tachyons in the twisted sector, but these are not localised near the horizon. We study the relation to the null orbifold in the limit of vanishing cosmological constant. We also discuss the problem of extending this analysis to the supersymmetric case.Comment: 20 pages, no figure

    Tachyon Condensation with B-field

    Get PDF
    We discuss classical solutions of a graviton-dilaton-B_{\mu\nu}-tachyon system. Both constant tachyon solutions, including AdS_3 solutions, and space-dependent tachyon solutions are investigated, and their possible implications to closed string tachyon condensation are argued. The stability issue of the AdS_3 solutions is also discussed.Comment: 10 pages, references adde

    Localized Tachyons and the Quantum McKay Correspondence

    Full text link
    The condensation of closed string tachyons localized at the fixed point of a C^d/\Gamma orbifold can be studied in the framework of renormalization group flow in a gauged linear sigma model. The evolution of the Higgs branch along the flow describes a resolution of singularities via the process of tachyon condensation. The study of the fate of D-branes in this process has lead to a notion of a ``quantum McKay correspondence.'' This is a hypothetical correspondence between fractional branes in an orbifold singularity in the ultraviolet with the Coulomb and Higgs branch branes in the infrared. In this paper we present some nontrivial evidence for this correspondence in the case C^2/Z_n by relating the intersection form of fractional branes to that of ``Higgs branch branes,'' the latter being branes which wrap nontrivial cycles in the resolved space.Comment: 25 pages; harvma

    On the Boundary Dynamics of Chern-Simons Gravity

    Get PDF
    We study Chern-Simons theory with a complex G_C or a real G x G gauge group on a manifold with boundary - this includes Lorentzian and Euclidean (anti-) de Sitter (E/A)dS gravity for G=SU(2) or G=SL(2,R). We show that there is a canonical choice of boundary conditions that leads to an unambiguous, fully covariant and gauge invariant, off-shell derivation of the boundary action - a G_C/G or G WZW model, coupled in a gauge invariant way to the boundary value of the gauge field. In particular, for (E/A)dS gravity, the boundary action is a WZW model with target space (E/A)dS_3, reminiscent of a worldsheet for worldsheet mechanism. We discuss in some detail the properties of the boundary theories that arise and we confront our results with various related constructions in the literature.Comment: 22 pages, LaTeX2e, v2: JHEP3.cls, references and a footnote adde

    Tadpole Cancellation in Unoriented Liouville Theory

    Full text link
    The tadpole cancellation in the unoriented Liouville theory is discussed. Using two different methods -- the free field method and the boundary-crosscap state method, we derive one-loop divergences. Both methods require two D1-branes with the symplectic gauge group to cancel the orientifold tadpole divergence. However, the finite part left is different in each method and this difference is studied. We also discuss the validity of the free field method and the possible applications of our result.Comment: 12 pages; v2: sign error in the crosscap state is corrected, some related argumets are modified and clarified; v3: minor corrections; v4:reference adde

    ZZ brane amplitudes from matrix models

    Full text link
    We study instanton contribution to the partition function of the one matrix model in the k-th multicritical region, which corresponds to the (2,2k-1) minimal model coupled to Liouville theory. The instantons in the one matrix model are given by local extrema of the effective potential for a matrix eigenvalue and identified with the ZZ branes in Liouville theory. We show that the 2-instanton contribution in the partition function is universal as well as the 1-instanton contribution and that the connected part of the 2-instanton contribution reproduces the annulus amplitudes between the ZZ branes in Liouville theory. Our result serves as another nontrivial check on the correspondence between the instantons in the one matrix model and the ZZ branes in Liouville theory, and also suggests that the expansion of the partition function in terms of the instanton numbers are universal and gives systematically ZZ brane amplitudes in Liouville theory.Comment: 29 pages, 4 figures; v2:how to scale x is generalized; v3:introduction and the last section are revised, typos correcte

    Black Rings, Supertubes, and a Stringy Resolution of Black Hole Non-Uniqueness

    Full text link
    In order to address the issues raised by the recent discovery of non-uniqueness of black holes in five dimensions, we construct a solution of string theory at low energies describing a five-dimensional spinning black ring with three charges that can be interpreted as D1-brane, D5-brane, and momentum charges. The solution possesses closed timelike curves (CTCs) and other pathologies, whose origin we clarify. These pathologies can be avoided by setting any one of the charges, e.g. the momentum, to zero. We argue that the D1-D5-charged black ring, lifted to six dimensions, describes the thermal excitation of a supersymmetric D1-D5 supertube, which is in the same U-duality class as the D0-F1 supertube. We explain how the stringy microscopic description of the D1-D5 system distinguishes between a spherical black hole and a black ring with the same asymptotic charges, and therefore provides a (partial) resolution of the non-uniqueness of black holes in five dimensions.Comment: 33 pages, 1 figur

    Strings on pp-waves and massive two dimensional field theories

    Full text link
    We find a general class of pp-wave solutions of type IIB string theory such that the light cone gauge worldsheet lagrangian is that of an interacting massive field theory. When the light cone Lagrangian has (2,2) supersymmetry we can find backgrounds that lead to arbitrary superpotentials on the worldsheet. We consider situations with both flat and curved transverse spaces. We describe in some detail the background giving rise to the N=2 sine Gordon theory on the worldsheet. Massive mirror symmetry relates it to the deformed CP1CP^1 model (or sausage model) which seems to elude a purely supergravity target space interpretation.Comment: harvmac, 26 pages, v2,3: references added, typos correcte

    Local Commutativity and Causality in Interacting PP-wave String Field Theory

    Full text link
    In this paper, we extend our previous study of causality and local commutativity of string fields in the pp-wave lightcone string field theory to include interaction. Contrary to the flat space case result of Lowe, Polchinski, Susskind, Thorlacius and Uglum, we found that the pp-wave interaction does not affect the local commutativity condition. Our results show that the pp-wave lightcone string field theory is not continuously connected with the flat space one. We also discuss the relation between the condition of local commutativity and causality. While the two notions are closely related in a point particle theory, their relation is less clear in string theory. We suggest that string local commutativity may be relevant for an operational defintion of causality using strings as probes.Comment: Latex, JHEP3.cls, 18 pages, no figures. v2: add comments about the UV-IR mixing effect displayed in our result. version to appear in JHE
    • …
    corecore