8 research outputs found

    ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements

    Get PDF
    On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path. The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications. This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter. The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site. Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations

    Application of Square-Root Filtering for Spacecraft Attitude Control

    Full text link

    Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity

    Get PDF
    Aberration-corrected transmission electron microscopy and high-angle annular dark field imaging was used to investigate the surface structures and internal defects of CeO2 nanoparticles (octahedra, rods, and cubes). Further, their catalytic reactivity in the water–gas shift (WGS) reaction and the exposed surface sites by using FTIR spectroscopy were tested. Rods and octahedra expose stable (111) surfaces whereas cubes have primarily (100) facets. Rods also had internal voids and surface steps. The exposed planes are consistent with observed reactivity patterns, and the normalized WGS reactivity of octahedra and rods were similar, but the cubes were more reactive. In situ FTIR spectroscopy showed that rods and octahedra exhibit similar spectra for [BOND]OH groups and that carbonates and formates formed upon exposure to CO whereas for cubes clear differences were observed. These results provide definitive information on the nature of the exposed surfaces in these CeO2 nanostructures and their influence on the WGS reactivity
    corecore