502 research outputs found
Vibe-ing : designing a smart textile care tool for the treatment of osteoporosis
Vibe-ing is a care tool in the form of a garment, which invites the body to feel, move, and heal through vibration therapy. The merino wool garment contains knitted pockets, equipped with electronic circuit boards that enable the garment to sense touch and vibrate specific pressure points on the body. With this design we aim to inform a multi-disciplinary audience about the oppor- tunities of integrating textile and vibration for health- care applications. We show how new manufacturing can lead to new possibilities in garment design and the integration of electronic components. With an example of dynamic behavior we demonstrate how the vibration therapy of the garment can be tailored to individual treatment needs. This design serves as a start. We plan to further investigate the effects of vibration therapy combined with textile design and electronics for the treatment of osteoporosis
Tunneling and Metastability of continuous time Markov chains
We propose a new definition of metastability of Markov processes on countable
state spaces. We obtain sufficient conditions for a sequence of processes to be
metastable. In the reversible case these conditions are expressed in terms of
the capacity and of the stationary measure of the metastable states
Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube
We have studied the afterpulse of a hemispherical photomultiplier tube for an
upcoming reactor neutrino experiment. The timing, the amplitude, and the rate
of the afterpulse for a 10 inch photomultiplier tube were measured with a 400
MHz FADC up to 16 \ms time window after the initial signal generated by an LED
light pulse. The time and amplitude correlation of the afterpulse shows several
distinctive groups. We describe the dependencies of the afterpulse on the
applied high voltage and the amplitude of the main light pulse. The present
data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure
Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment
The K2K long-baseline neutrino oscillation experiment uses a Scintillating
Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino
interactions in the near detector. We describe the track reconstruction
algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI
Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam
Neutral current single pi0 production induced by neutrinos with a mean energy
of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near
detector of the K2K long baseline neutrino experiment. The cross section for
this process relative to the total charged current cross section is measured to
be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of
produced pi0s is measured and is found to be in good agreement with an
expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.
Evidence for muon neutrino oscillation in an accelerator-based experiment
We present results for muon neutrino oscillation in the KEK to Kamioka (K2K)
long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced
muon neutrino beam with a mean energy of 1.3 GeV directed at the
Super-Kamiokande detector. We observed the energy dependent disappearance of
muon neutrino, which we presume have oscillated to tau neutrino. The
probability that we would observe these results if there is no neutrino
oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure
A Comparative Modeling Analysis of Risk-Based Lung Cancer Screening Strategies
Background: Risk-prediction models have been proposed to select individuals for lung cancer screening. However, their longterm effects are uncertain. This study evaluates long-term benefits and harms of risk-based screening compared with current
United States Preventive Services Task Force (USPSTF) recommendations.
Methods: Four independent natural history models were used to perform a comparative modeling study evaluating longterm benefits and harms of selecting individuals for lung cancer screening through risk-prediction models. In total, 363 riskbased screening strategies varying by screening starting and stopping age, risk-prediction model used for eligibility (Bach,
PLCOm2012, or Lung Cancer Death Risk Assessment Tool [LCDRAT]), and risk threshold were evaluated for a 1950 US birth cohort. Among the evaluated outcomes were percentage of individuals ever screened, screens required, lung cancer deaths
averted, life-years gained, and overdiagnosis.
Results: Risk-based screening strategies requiring sim
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
- …