6 research outputs found

    Evaluation of a Threshold-Based Model of the Elevated-Temperature Fatique of Impact-Damaged γ-TiAl

    Get PDF
    Step-loading fatigue tests have been conducted on two γ-TiAl alloys with differing microstructures following quasi-static indentations intended to simulate assembly-related impact damage to low-pressure turbine blades. Fatigue tests were conducted at 600 °C using computer-controlled servohydraulic loading at a frequency of 20 Hz. Reasonably good agreement was achieved between the fatigue data and calculated fatigue strength based on the fatigue threshold and measured impact severity. In certain cases, the fatigue threshold model fails to completely describe the data. These discrepancies may be related to residual stresses, variations in crack-shape morphology, and small-crack effects. Residual stresses could not be directly measured, given the small size of the damage zones. However, a comparison of fatigue threshold approximations based on a through-thickness crack geometry and a corner-crack geometry suggests that these two models may represent the upper and lower bounds of the actual fatigue behavior. In addition, the behavior of small cracks was examined by modeling the stress-lifetime response of lightly damaged specimens of the duplex alloy. This effort indicates the need for small-crack fatigue threshold values when designing fatigue-critical γ-TiAl components

    The Effect of Impact Damage on the Room-Temperature Fatigue Behavior of γ-TiAl

    Get PDF
    The relationship between impact damage and the fatigue behavior of γ-TiAl has been examined. Axial fatigue specimens fabricated from cast Ti-47.9Al-2.0Cr-1.9Nb (to be referred to as 48-2-2) and Ti-47.3Al-2.2Nb-0.5Mn-0.4W-0.4Mo-0.23Si (to be referred to as WMS) alloys were damaged by impact under controlled conditions with a 60 deg wedge-shaped indenter to simulate assembly-related damage in low-pressure turbine blades. The level of damage produced was quantified and found to correlate well with the peak load of the impact event. The WMS alloy exhibited a greater resistance to impact damage due to its higher yield strength and lamellar microstructure. A measure of the ambient-temperature fatigue failure stress in the alloys was obtained by standard fatigue testing employing a step-loading approach. The failure stress of the WMS alloy was greater than that of the 48-2-2 alloy in the undamaged state. The relationship between impact damage and failure stress was examined using a threshold-based approach. These studies indicate that, for damage levels below a transitional flaw size, the failure stress is near that for undamaged specimens. At damage levels greater than the transitional flaw size, the failure stress can be adequately approximated using the threshold stress-intensity range (ΔKTH ) from long-crack growth testing. Fractographic studies were performed to investigate impact damage and crack-advance mechanisms, which match those observed in other alloys tested at room temperature
    corecore