322 research outputs found
Cosmological scaling solutions in generalised Gauss-Bonnet gravity theories
The conditions for the existence and stability of cosmological power-law
scaling solutions are established when the Einstein-Hilbert action is modified
by the inclusion of a function of the Gauss-Bonnet curvature invariant. The
general form of the action that leads to such solutions is determined for the
case where the universe is sourced by a barotropic perfect fluid. It is shown
by employing an equivalence between the Gauss-Bonnet action and a scalar-tensor
theory of gravity that the cosmological field equations can be written as a
plane autonomous system. It is found that stable scaling solutions exist when
the parameters of the model take appropriate values.Comment: 10 pages and 5 figure
Geographical variation in serological responses to recombinant Pneumocystis jirovecii major surface glycoprotein antigens
AbstractThe use of recombinant fragments of the major surface glycoprotein (Msg) of Pneumocystis jirovecii has proven useful for studying serological immune responses of blood donors and human immunodeficiency virus (HIV)-positive (HIV+) patients. Here, we have used ELISA to measure antibody titres to Msg fragments (MsgA, MsgB, MsgC1, MsgC3, MsgC8 and MsgC9 in sera isolated in the USA (n=200 and Spain (n=326), to determine whether geographical location affects serological responses to these antigens. Blood donors from Seville exhibited a significantly greater antibody titre to MsgC8, and significantly lower responses to MsgC3 and MsgC9, than did Cincinnati (USA) donors. Spanish blood donors (n=162 also exhibited elevated responses to MsgC1, MsgC8 and MsgC9 as compared with Spanish HIV+ (n=patients. HIV+ patients who had Pneumocystis pneumonia (PcP+) exhibited a higher response to MsgC8 than did HIV+ PcP- patients. These data show that geographical location plays a role in responsiveness to Msg fragments. Additionally, these fragments have utility in differentiating HIV+ PcP and HIV+ PcP+ among patient populations
Observational Constraints on Chaplygin Quartessence: Background Results
We derive the constraints set by several experiments on the quartessence
Chaplygin model (QCM). In this scenario, a single fluid component drives the
Universe from a nonrelativistic matter-dominated phase to an accelerated
expansion phase behaving, first, like dark matter and in a more recent epoch
like dark energy. We consider current data from SNIa experiments, statistics of
gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in
galaxy clusters. We investigate the constraints from this data set on flat
Chaplygin quartessence cosmologies. The observables considered here are
dependent essentially on the background geometry, and not on the specific form
of the QCM fluctuations. We obtain the confidence region on the two parameters
of the model from a combined analysis of all the above tests. We find that the
best-fit occurs close to the CDM limit (). The standard
Chaplygin quartessence () is also allowed by the data, but only at
the level.Comment: Replaced to match the published version, references update
A pragmatic approach to evaluate alternative indicators to GDP
The serious economic crisis broken out in 2008 highly stressed the limitations of GDP used as a well-being indicator and as a predictive tool for economy. This induced the need to identify new indicators able to link the economic prosperity of a country to aspects of sustainable development and externalities, both positive and negative, in the long run. The aim of this paper is to introduce a structured approach which supports the choice or the construction of alternative indicators to GDP. The starting point is the definition of what a well-being indicator actually should represent according to the Recommendations of the Stiglitz-Sen-Fitoussi Report on the measurement of economic performance and social progress. Then the paper introduces a systematic procedure for the analysis of well-being indicators. The different phases of this procedure entail the checking of indicators technical properties and their effect on the representational efficacy. Finally, some of the most representative well-being indicators drawn from the literature are compared and a detailed application example is propose
Interacting Ghost Dark Energy in Non-Flat Universe
A new dark energy model called "ghost dark energy" was recently suggested to
explain the observed accelerating expansion of the universe. This model
originates from the Veneziano ghost of QCD. The dark energy density is
proportional to Hubble parameter, , where is a
constant of order and is
QCD mass scale. In this paper, we extend the ghost dark energy model to the
universe with spatial curvature in the presence of interaction between dark
matter and dark energy. We study cosmological implications of this model in
detail. In the absence of interaction the equation of state parameter of ghost
dark energy is always and mimics a cosmological constant in the
late time, while it is possible to have provided the interaction is
taken into account. When , all previous results of ghost dark energy in
flat universe are recovered. To check the observational consistency, we use
Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave
Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from
Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at
confidence interval are: ,
and . Consequently
the total energy density of universe at present time in this model at 68% level
equates to .Comment: 19 pages, 9 figures. V2: Added comments, observational consequences,
references, figures and major corrections. Accepted for publication in
General Relativity and Gravitatio
Cosmological evolution and statefinder diagnostic for new holographic dark energy model in non flat universe
In this paper, the holographic dark energy model with new infrared cut-off
proposed by Granda and Oliveros has been investigated in spatially non flat
universe. The dependency of the evolution of equation of state, deceleration
parameter and cosmological evolution of Hubble parameter on the parameters of
new HDE model are calculated. Also, the statefinder parameters and in
this model are derived and the evolutionary trajectories in plane are
plotted. We show that the evolutionary trajectories are dependent on the model
parameters of new HDE model. Eventually, in the light of SNe+BAO+OHD+CMB
observational data, we plot the evolutionary trajectories in and
planes for best fit values of the parameters of new HDE model.Comment: 11 pages, 5 figures, Accepted by Astrophys. Space Sc
The Environmental Paradox of the Welfare State: The Dynamics of Sustainability
Thus far, there has been a reluctance to instigate a dialogue and engage with the tensions between two literatures with significant insights for each other. The first is the literature on the fiscal sustainability of welfare states, which is invariably predicated upon future growth primarily to manage demographic changes. The second is the post-growth literature, which has enjoyed a renaissance in recent years due to an environmental critique of economic growth. Both literatures contain implications for the analysis of welfare state sustainability. The primary contribution of this paper will be to explore the intractability of the tensions between these discourses and the difficulty of mapping out a progressive policy direction in the twenty-first century which meets both our environmental and social sensibilities. It is claimed that in the post-industrial world the fiscal sustainability of welfare capitalism is dependent upon public expenditure financed indirectly an environmentally unsustainable growth dynamic, but that ironically any conflagration of public welfare programmes is likely to be counter-productive as the welfare state is able to promote de-carbonisation strategies and notions of the public good as well as promoting monetarily and ecologically efficient public welfare services
Transient Crossing of Phantom divide line under Gauss-Bonnet interaction
Smooth double crossing of the phantom barrier has been
found possible in cosmological model with Gauss-Bonnet-scalar interaction, in
the presence of background cold dark matter. Such crossing has been observed to
be a sufficiently late time phenomena and independent of the sign of
Gauss-Bonnet-scalar interaction. The luminosity distance versus redshift curve
shows a perfect fit with the model up to .Comment: 9 pages, 9 figure
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ