138 research outputs found

    On the linear independence of spikes and sines

    Get PDF
    The purpose of this work is to survey what is known about the linear independence of spikes and sines. The paper provides new results for the case where the locations of the spikes and the frequencies of the sines are chosen at random. This problem is equivalent to studying the spectral norm of a random submatrix drawn from the discrete Fourier transform matrix. The proof involves depends on an extrapolation argument of Bourgain and Tzafriri.Comment: 16 pages, 4 figures. Revision with new proof of major theorem

    Analysis of Basis Pursuit Via Capacity Sets

    Full text link
    Finding the sparsest solution α\alpha for an under-determined linear system of equations Dα=sD\alpha=s is of interest in many applications. This problem is known to be NP-hard. Recent work studied conditions on the support size of α\alpha that allow its recovery using L1-minimization, via the Basis Pursuit algorithm. These conditions are often relying on a scalar property of DD called the mutual-coherence. In this work we introduce an alternative set of features of an arbitrarily given DD, called the "capacity sets". We show how those could be used to analyze the performance of the basis pursuit, leading to improved bounds and predictions of performance. Both theoretical and numerical methods are presented, all using the capacity values, and shown to lead to improved assessments of the basis pursuit success in finding the sparest solution of Dα=sD\alpha=s

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    On Model-Based RIP-1 Matrices

    Get PDF
    The Restricted Isometry Property (RIP) is a fundamental property of a matrix enabling sparse recovery. Informally, an m x n matrix satisfies RIP of order k in the l_p norm if ||Ax||_p \approx ||x||_p for any vector x that is k-sparse, i.e., that has at most k non-zeros. The minimal number of rows m necessary for the property to hold has been extensively investigated, and tight bounds are known. Motivated by signal processing models, a recent work of Baraniuk et al has generalized this notion to the case where the support of x must belong to a given model, i.e., a given family of supports. This more general notion is much less understood, especially for norms other than l_2. In this paper we present tight bounds for the model-based RIP property in the l_1 norm. Our bounds hold for the two most frequently investigated models: tree-sparsity and block-sparsity. We also show implications of our results to sparse recovery problems.Comment: Version 3 corrects a few errors present in the earlier version. In particular, it states and proves correct upper and lower bounds for the number of rows in RIP-1 matrices for the block-sparse model. The bounds are of the form k log_b n, not k log_k n as stated in the earlier versio

    Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings

    Get PDF
    The class of generalized shearlet dilation groups has recently been developed to allow the unified treatment of various shearlet groups and associated shearlet transforms that had previously been studied on a case-by-case basis. We consider several aspects of these groups: First, their systematic construction from associative algebras, secondly, their suitability for the characterization of wavefront sets, and finally, the question of constructing embeddings into the symplectic group in a way that intertwines the quasi-regular representation with the metaplectic one. For all questions, it is possible to treat the full class of generalized shearlet groups in a comprehensive and unified way, thus generalizing known results to an infinity of new cases. Our presentation emphasizes the interplay between the algebraic structure underlying the construction of the shearlet dilation groups, the geometric properties of the dual action, and the analytic properties of the associated shearlet transforms.Comment: 28 page

    Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints

    Full text link
    Regularization of ill-posed linear inverse problems via 1\ell_1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an 1\ell_1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to 1\ell_1-constraints, using a gradient method, with projection on 1\ell_1-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.Comment: 24 pages, 5 figures. v2: added reference, some amendments, 27 page

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m(slogn)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling

    The road to deterministic matrices with the restricted isometry property

    Get PDF
    The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.Comment: 24 page
    corecore