603 research outputs found
Feedback methods for inverse simulation of dynamic models for engineering systems applications
Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed
applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves
design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within
closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications
of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models
Comparative cytogenetics of spiny rats of the genus proechimys (Rodentia, Echimyidae) from the Amazon region
We made a comparative analysis of the cytogenetics of spiny rat species of the genus Proechimys collected from several sites of the Madeira River basin (Amazonas State, Brazil) and Jari River valley (Pará State, Brazil). Individuals were assigned to three groups based on diploid and fundamental numbers: 2n=28, FN=46 (P. cuvieri and P. gr. longicaudatus); 2n=38, FN=52 (Proechimys gr. guyannensis), and 2n=40, FN=54 (P. gardneri). The nucleolar organizer region (NOR) was interstitial on the long arm of one submetacentric pair, as seen in all species of Proechimys analyzed thus far. However, its position in the karyotype was variable. A duplication of the NOR in one of the homologues was detected in P. gr. longicaudatus from the Aripuanã basin along the mid Madeira. The C-band pattern varied between species and, together with the NOR, allowed the identification of two evolutionary units in P. gr. longicaudatus in the region of the mid Madeira River (cytotypes A and B). The morphology and banding of the sex chromosomes were species specific. A range extension is suggested for the geographic distribution of P. gardneri and P. gr. longicaudatus. Moreover, we suggest that species of Proechimys with 2n=38 chromosomes are restricted to east of the Negro River and north of the Amazon River. We also revised the published chromosome data available for Proechimys. © FUNPEC-RP
An overview and investigation of relapse predictors in anorexia nervosa: a systematic review and meta-analysis
Objective: An extensive number of predictors has been examined across the literature to improve knowledge of relapse in anorexia nervosa (AN). These studies provide various recovery and relapse definitions, follow-up durations and relapse rates. The current study summarizes these values and predictors of relapse in AN in a review and meta-analysis.Method: The study was executed according to PRISMA guidelines. Different databases were searched and studies in which participants did not receive an official clinical diagnosis were excluded. A quality analysis was performed using the National Institute of Health's Study Quality Assessment Tool. Random-effects meta-analyses were conducted to summarize data.Results: Definitions of relapse and recovery were diverse. During an average follow-up period of 31 months an average relapse rate of 37% was found. Predictive variables from 28 studies were grouped in six categories: age and sex, symptoms and behaviors, AN subtype and duration, weight or weight change, comorbidity, and personality. The studies were characterized by non-significant and contradictory results. Meta-analyses were performed for the predictors age, AN duration, pre-treatment BMI, post-treatment BMI and depression. These yielded significant effects for post-treatment BMI and depression: higher pre-treatment depression (SMD = .40 CI [.21-.59] and lower post-treatment BMI (SMD = -.35 CI [-.63 to -.07]) increased relapse chances in AN.Discussion: Our results emphasized a lack of sufficiently powered studies, consistent results, and robust findings. Solely post-treatment BMI and pre-treatment depression predicted relapse. Future research should use uniform definitions, larger samples and better designs, to improve our understanding of relapse in AN.Public significance: Knowledge about predictors is important to understand high relapse rates. Our study performed a review and meta-analysis of relapse predictors in AN. Related to the heterogeneity in studies examining predictors, an overview of relapse and recovery definitions, follow-up durations and relapse rates for AN was provided. Significant effects were found for post-treatment BMI and pre-treatment depression. More studies with uniform definitions are needed to improve clinical implications.Stress-related psychiatric disorders across the life spa
Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice
At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg
antiferromagnet on a simple cubic lattice with competing first and second
neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave
theory. We find existence of two phases: a two sublattice Neel phase for small
J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain
the sublattice magnetizations and ground state energies for the two phases and
find that there exists a first order phase transition from the AF-phase to the
CAF-phase at the critical transition point, pc = 0.28. Our results for the
value of pc are in excellent agreement with results from Monte-Carlo
simulations and variational spin wave theory. We also show that the quartic 1/S
corrections due spin-wave interactions enhance the sublattice magnetization in
both the phases which causes the intermediate paramagnetic phase predicted from
linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie
Perturbation evolution with a non-minimally coupled scalar field
We recently proposed a simple dilaton-derived quintessence model in which the
scalar field was non-minimally coupled to cold dark matter, but not to
`visible' matter. Such couplings can be attributed to the dilaton in the low
energy limit of string theory, beyond tree level. In this paper we discuss the
implications of such a model on structure formation, looking at its impact on
matter perturbations and CMB anisotropies. We find that the model only deviates
from CDM and minimally coupled theories at late times, and is well
fitted to current observational data. The signature left by the coupling, when
it breaks degeneracy at late times, presents a valuable opportunity to
constrain non-minimal couplings given the wealth of new observational data
promised in the near future.Comment: Version appearing in Physical Review D. 10 pages, 9 figs. Comparison
with SN1a and projected MAP results, and appendix adde
The PSII calcium site revisited
Biological and Soft Matter Physic
Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C
Highly p-type GaAs:C was ion-implanted with Mn at differing doses to produce
Mn concentrations in the 1 - 5 at.% range. In comparison to LT-GaAs and
n+GaAs:Si samples implanted under the same conditions, transport and magnetic
properties show marked differences. Transport measurements show anomalies,
consistent with observed magnetic properties and with epi- LT-(Ga,Mn)As, as
well as the extraordinary Hall Effect up to the observed magnetic ordering
temperature (T_C). Mn ion-implanted p+GaAs:C with as-grown carrier
concentrations > 10^20 cm^-3 show remanent magnetization up to 280 K
Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder
This is a review of ground-state features of the s=1/2 Heisenberg
antiferromagnet on two-dimensional lattices. A central issue is the interplay
of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor
bonds, geometric frustration) and quantum fluctuations and their impact on
possible long-range order. This article presents a unified summary of all 11
two-dimensional uniform Archimedean lattices which include e.g. the square,
triangular and kagome lattice. We find that the ground state of the spin-1/2
Heisenberg antiferromagnet is likely to be semi-classically ordered in most
cases. However, the interplay of geometric frustration and quantum fluctuations
gives rise to a quantum paramagnetic ground state without semi-classical
long-range order on two lattices which are precisely those among the 11 uniform
Archimedean lattices with a highly degenerate ground state in the classical
limit. The first one is the famous kagome lattice where many low-lying singlet
excitations are known to arise in the spin gap. The second lattice is called
star lattice and has a clear gap to all excitations.
Modification of certain bonds leads to quantum phase transitions which are
also discussed briefly. Furthermore, we discuss the magnetization process of
the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on
anomalies like plateaus and a magnetization jump just below the saturation
field. As an illustration we discuss the two-dimensional Shastry-Sutherland
model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review
article. This version corrects two further typographic errors (three total
with respect to the published version), see page 2 for detail
A re-interpretation of the concept of mass and of the relativistic mass-energy relation
For over a century the definitions of mass and derivations of its relation
with energy continue to be elaborated, demonstrating that the concept of mass
is still not satisfactorily understood. The aim of this study is to show that,
starting from the properties of Minkowski spacetime and from the principle of
least action, energy expresses the property of inertia of a body. This implies
that inertial mass can only be the object of a definition - the so called
mass-energy relation - aimed at measuring energy in different units, more
suitable to describe the huge amount of it enclosed in what we call the
"rest-energy" of a body. Likewise, the concept of gravitational mass becomes
unnecessary, being replaceable by energy, thus making the weak equivalence
principle intrinsically verified. In dealing with mass, a new unit of
measurement is foretold for it, which relies on the de Broglie frequency of
atoms, the value of which can today be measured with an accuracy of a few parts
in 10^9
- …