6 research outputs found

    Transition Path Sampling and Forward Flux Sampling. Applications to Biological Systems.

    Full text link
    The last decade has seen a rapid growth in the number of simulation methods and applications dealing with the sampling of transition pathways of rare nanoscale events. Such studies are crucial, for example, for understanding the mechanism and kinetics of conformational transitions and enzymatic events associated with the function of biomolecules. In this review, a broad account of transition path sampling approaches is provided, starting from the general concepts, progressing to the specific principles that underlie some of the most important methods, and eventually singling out the so-called forward flux sampling method for a more detailed description. This is done because forward flux sampling, despite its appealing simplicity and potential efficiency, has thus far received limited attention from practitioners. While path sampling methods have a widespread application to many types of rare transitional events, here only recent applications involving biomolecules are reviewed, including isomerization, protein folding, and enzyme catalysis.This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Additional support from the National Science Foundation Award 0553719 is also gratefully acknowledged. The authors are also grateful to J. Hernandez-Ortiz and P. Bolhuis for allowing us to modify their picture files

    Avoiding traps in trajectory space: Metadynamics enhanced transition path sampling

    No full text
    We propose a transition path sampling (TPS) scheme designed to enhance sampling in systems with multiple reaction channels. In this method, based on a combination of the metadynamics algorithm with the TPS shooting move, a history dependent bias drives the simulation towards unexplored reaction channels. The bias, constructed as a superposition of repulsive Gaussian potentials deposited on the trajectories harvested in the course of the simulation, acts only during the initial stage of the trajectory generation, but leaves the dynamics along the trajectories unaffected such that the sampled pathways are true dynamical trajectories. Simulations carried out for two test systems indicate that the new approach effortlessly switches between distinct reaction channels even if they are separated by high barriers in trajectory space

    Pathways to self-organization: Crystallization via nucleation and growth

    No full text
    corecore