918 research outputs found

    A New Exponential Gravity

    Full text link
    We propose a new exponential f(R) gravity model with f(R)=(R-\lambda c)e^{\lambda(c/R)^n} and n>3, \lambda\geq 1, c>0 to explain late-time acceleration of the universe. At the high curvature region, the model behaves like the \LambdaCDM model. In the asymptotic future, it reaches a stable de-Sitter spacetime. It is a cosmologically viable model and can evade the local gravity constraints easily. This model share many features with other f(R) dark energy models like Hu-Sawicki model and Exponential gravity model. In it the dark energy equation of state is of an oscillating form and can cross phantom divide line \omega_{de}=-1. In particular, in the parameter range 3< n\leq 4, \lambda \sim 1, the model is most distinguishable from other models. For instance, when n=4, \lambda=1, the dark energy equation of state will cross -1 in the earlier future and has a stronger oscillating form than the other models, the dark energy density in asymptotical future is smaller than the one in the high curvature region. This new model can evade the local gravity tests easily when n>3 and \lambda>1.Comment: 12 pages, 8 figure

    Homeostasis Meets Motivation in the Battle to Control Food Intake.

    Get PDF
    Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity

    Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory

    Full text link
    Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv:0707.2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified formalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravity's rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.Comment: 5 page

    Black Hole Entropy: From Shannon to Bekenstein

    Full text link
    In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed [8]) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of [5]. Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.Comment: 9 pages Latex, Comments are welcome; Thoroughly revised version, reference and acknowledgements sections enlarged, numerical error in final result corrected, no major changes, to appear in IJT

    Lifetime prevalence and associated factors of itch with skin conditions:atopic dermatitis, psoriasis and dry skin in individuals aged &gt; 50 years

    Get PDF
    Background: Itch, common in dermatological conditions, is often accompanied by psychological distress and reduced quality of life. However, research on the prevalence and associated factors of itch with skin conditions in general populations is limited. Objectives: This cross-sectional study aimed to determine the lifetime prevalence of itch with skin conditions and to identify its associated factors in individuals aged &gt; 50 years. Methods: Participants from the Rotterdam Study, a population-based cohort, were interviewed to assess whether they had ever had an itchy skin condition, defining lifetime itch with skin conditions. Over 20 demographic, lifestyle, dermatological and nondermatological factors were recorded. Multivariable logistic regression analysis explored associations between these factors and itch with skin conditions, reported as odds ratios (ORs) with 95% confidence intervals (CIs). Results: In total, 5246 eligible participants were included (age range 51-100 years, median age 67; 56.0% women). The results revealed a -lifetime prevalence of 33.7% for itch with skin conditions. Factors significantly associated with itch were female sex (OR 1.26, 95% CI 1.11-1.43), body mass index (1.02, 1.01-1.03), self-reported atopic dermatitis (4.29, 3.74-4.92), presence of atopic dermatitis (1.97, 1.60-2.43), self - reported psoriasis (2.31, 1.77-3.01), presence of psoriasis (2.11, 1.55-2.87), self-reported dry skin (1.95, 1.73-2.20), self-reported asthma (1.40, 1.08-1.83), renal impairment (1.45, 1.17-1.79), and clinically relevant depressive (1.85, 1.52-2.25) and anxiety symptoms (1.36, 1.11-1.66). Conclusions: This study reveals a substantial one-third lifetime prevalence of itch with skin conditions in individuals aged &gt; 50 years. Significant associations with diverse lifestyle, demographic, dermatological and, intriguingly, nondermatological factors, including renal impairment, imply additional contributors to induction or persistence of itch in individuals with skin conditions.</p

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Threshold Electrodisintegration of ^3He

    Get PDF
    Cross sections were measured for the near-threshold electrodisintegration of ^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and prior measurements the transverse and longitudinal response functions R_T and R_L were deduced. Comparisons are made against previously published and new non-relativistic A=3 calculations using the best available NN potentials. In general, for q<2 fm^{-1} these calculations accurately predict the threshold electrodisintegration of ^3He. Agreement at increasing q demands consideration of two-body terms, but discrepancies still appear at the highest momentum transfers probed, perhaps due to the neglect of relativistic dynamics, or to the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
    corecore