105 research outputs found

    Magnetic anisotropy obtained from demagnetization curves: Influence of particle orientation and interactions

    Get PDF
    The influence of easy axis orientation and interparticle interactions on the apparent magnetic anisotropy distribution, obtained from the demagnetization curve analysis, has been studied. For any particle orientation, the method is useful in detecting multimodal distributions as well as effective anisotropy field values. In the case of interacting particulate systems, the range of interaction strength that can be studied is wider than that of the reversible transverse susceptibility method. Analytical expressions for the distribution curves are given, allowing numerical predictions for different distributions of particle orientations and interaction strengths

    Derivation of the Curie-Weiss Law in Dynamical Mean-Field Theory

    Full text link
    We present an analytic derivation of the linear temperature dependence of the inverse static susceptibility χ1(T,U)TTc(U)\chi ^{-1}(T,U)\sim T-T{_{c}}(U) near the transition from a paramagnetic to a ferromagnetic correlated metal within the dynamical mean-field theory (DMFT) for the Hubbard model. The equations for the critical temperature and interaction strength of the transition are also determined.Comment: 5 pages, no figure

    Magnetic fluctuations in 2D metals close to the Stoner instability

    Full text link
    We consider the effect of potential disorder on magnetic properties of a two-dimensional metallic system (with conductance g1g\gg 1) when interaction in the triplet channel is so strong that the system is close to the threshold of the Stoner instability. We show, that under these conditions there is an exponentially small probability for the system to form local spin droplets which are local regions with non zero spin density. Using a non-local version of the optimal fluctuation method we find analytically the probability distribution and the typical spin of a local spin droplet (LSD). In particular, we show that both the probability to form a LSD and its typical spin are independent of the size of the droplet (within the exponential accuracy). The LSDs manifest themselves in temperature dependence of observable quantities. We show, that below certain cross-over temperature the paramagnetic susceptibility acquires the Curie-like temperature dependence, while the dephasing time (extracted from magneto-resistance measurements) saturates.Comment: 15 pages, 4 figure

    Scaling behavior of the dipole coupling energy in two-dimensional disordered magnetic nanostructures

    Full text link
    Numerical calculations of the average dipole-coupling energy Eˉdip\bar E_\mathrm{dip} in two-dimensional disordered magnetic nanostructures are performed as function of the particle coverage CC. We observe that Eˉdip\bar E_\mathrm{dip} scales as EˉdipCα\bar E_\mathrm{dip}\propto C^{\alpha^*} with an unusually small exponent α0.8\alpha^*\simeq 0.8--1.0 for coverages C20C\lesssim20%. This behavior is shown to be primarly given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α\alpha^* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C20C\gtrsim20% we obtain EˉdipCα\bar E_\mathrm{dip}\propto C^\alpha with α=3/2\alpha=3/2, in agreement with the straighforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α1.0\alpha^* \simeq 1.0) and strongly interacting (α0.8\alpha^* \simeq 0.8) particle ensembles as function of coverage.Comment: accepted for publication in Phys.Rev.

    Macrospin approximation and quantum effects in models for magnetization reversal

    Full text link
    The thermal activation of magnetization reversal in magnetic nanoparticles is controlled by the anisotropy-energy barrier. Using perturbation theory, exact diagonalization and stability analysis of the ferromagnetic spin-s Heisenberg model with coupling or single-site anisotropy, we study the effects of quantum fluctuations on the height of the energy barrier. Opposed to the classical case, there is no critical anisotropy strength discriminating between reversal via coherent rotation and via nucleation/domain-wall propagation. Quantum fluctuations are seen to lower the barrier depending on the anisotropy strength, dimensionality and system size and shape. In the weak-anisotropy limit, a macrospin model is shown to emerge as the effective low-energy theory where the microscopic spins are tightly aligned due to the ferromagnetic exchange. The calculation provides explicit expressions for the anisotropy parameter of the effective macrospin. We find a reduction of the anisotropy-energy barrier as compared to the classical high spin-s limit.Comment: 10 pages, 11 figure

    Magnetic Field Induced Spin Polarization of AlAs Two-dimensional Electrons

    Full text link
    Two-dimensional (2D) electrons in an in-plane magnetic field become fully spin polarized above a field B_P, which we can determine from the in-plane magnetoresistance. We perform such measurements in modulation-doped AlAs electron systems, and find that the field B_P increases approximately linearly with 2D electron density. These results imply that the product |g*|m*, where g* is the effective g-factor and m* the effective mass, is a constant essentially independent of density. While the deduced |g*|m* is enhanced relative to its band value by a factor of ~ 4, we see no indication of its divergence as 2D density approaches zero. These observations are at odds with results obtained in Si-MOSFETs, but qualitatively confirm spin polarization studies of 2D GaAs carriers.Comment: 4 pages, 5 figure

    Metamagnetic Quantum Criticality in Sr3Ru2O7

    Get PDF
    We consider the metamagnetic transition in the bilayer ruthenate, Sr3Ru2O7{\rm Sr_3Ru_2O_7}, and use this to motivate a renormalization group treatment of a zero-temperature quantum-critical end-point. We summarize the results of mean field theory and give a pedagogical derivation of the renormalization-group equations. These are then solved to yield numerical results for the susceptibility, the specific heat and the resistivity exponent which can be compared with measured data on Sr3Ru2O7{\rm Sr_3Ru_2O_7} to provide a powerful test for the standard framework of metallic quantum criticality. The observed approach to the critical point is well-described by our theory explaining a number of unusual features of experimental data. The puzzling behaviour very near to the critical point itself, though, is not accounted for by this, or any other theory with a Fermi surface

    Itinerant Ferromagnetism in the Periodic Anderson Model

    Full text link
    We introduce a novel mechanism for itinerant ferromagnetism, based on a simple two-band model. The model includes an uncorrelated and dispersive band hybridized with a second band which is narrow and correlated. The simplest Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM). Using quantum Monte Carlo and analytical methods, we show that the PAM and an extension of it contain the new mechanism and exhibit a non-saturated ferromagnetic ground state in the intermediate valence regime. We propose that the mechanism, which does not assume an intra atomic Hund's coupling, is present in both the iron group and in some f electron compounds like Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium monochalcogenides US, USe, and UTe

    Metallic ferromagnetism without exchange splitting

    Full text link
    In the band theory of ferromagnetism there is a relative shift in the position of majority and minority spin bands due to the self-consistent field due to opposite spin electrons. In the simplest realization, the Stoner model, the majority and minority spin bands are rigidly shifted with respect to each other. Here we consider models at the opposite extreme, where there is no overall shift of the energy bands. Instead, upon spin polarization one of the bands broadens relative to the other. Ferromagnetism is driven by the resulting gain in kinetic energy. A signature of this class of mechanisms is that a transfer of spectral weight in optical absorption from high to low frequencies occurs upon spin polarization. We show that such models arise from generalized tight binding models that include off-diagonal matrix elements of the Coulomb interaction. For certain parameter ranges it is also found that reentrant ferromagnetism occurs. We examine properties of these models at zero and finite temperatures, and discuss their possible relevance to real materials

    Anisotropic Superparamagnetism of Monodispersive Cobalt-Platinum Nanocrystals

    Full text link
    Based on the high-temperature organometallic route (Sun et al. Science 287, 1989 (2000)), we have synthesized powders containing CoPt_3 single crystals with mean diameters of 3.3(2) nm and 6.0(2) nm and small log-normal widths sigma=0.15(1). In the entire temperature range from 5 K to 400 K, the zero-field cooled susceptibility chi(T) displays significant deviations from ideal superparamagnetism. Approaching the Curie temperature of 450(10) K, the deviations arise from the (mean-field) type reduction of the ferromagnetic moments, while below the blocking temperature T_b, chi(T) is suppressed by the presence of energy barriers, the distributions of which scale with the particle volumes obtained from transmission electron microscopy (TEM). This indication for volume anisotropy is supported by scaling analyses of the shape of the magnetic absorption chi''(T,omega) which reveal distribution functions for the barriers being also consistent with the volume distributions observed by TEM. Above 200 K, the magnetization isotherms M(H,T) display Langevin behavior providing 2.5(1) mu_B per CoPt_3 in agreement with reports on bulk and thin film CoPt_3. The non-Langevin shape of the magnetization curves at lower temperatures is for the first time interpreted as anisotropic superparamagnetism by taking into account an anisotropy energy of the nanoparticles E_A(T). Using the magnitude and temperature variation of E_A(T), the mean energy barriers and 'unphysical' small switching times of the particles obtained from the analyses of chi''(T,omega) are explained. Below T_b hysteresis loops appear and are quantitatively described by a blocking model, which also ignores particle interactions, but takes the size distributions from TEM and the conventional field dependence of E_A into account.Comment: 12 pages with 10 figures and 1 table. Version accepted for publication in Phys. Rev. B . Two-column layou
    corecore