64 research outputs found
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Recommended from our members
Primed allorecognition of damselfish leukocytes and epithelium: Acceleration and magnitude of response
Recommended from our members
MCNP capabilities at the dawn of the 21st century: Neutron-gamma applications
The Los Alamos National Laboratory Monte Carlo N-Particle radiation transport code, MCNP, has become an international standard for a wide spectrum of neutron-gamma radiation transport applications. These include nuclear criticality safety, radiation shielding, nuclear safeguards, nuclear well-logging, fission and fusion reactor design, accelerator target design, detector design and analysis, health physics, medical radiation therapy and imaging, radiography, decontamination and decommissioning, and waste storage and disposal. The latest version of the code, MCNP4C, was released to the Radiation Safety Information Computational Center (RSICC) in February 2000.This paper described the new features and capabilities of the code, and discusses the specific applicability to neutron-gamma problems. We will also discuss the future directions for MCNP code development, including rewriting the code in Fortran 90
The varying role of population abundance in structuring indices of biotic homogenization
Aim: An important component of human-induced global change is the decrease or increase in community distinctiveness (taxonomic homogenization or differentiation, respectively) that follows the loss of native species and gain of non-native species. We use simulation approaches to assess the extent to which conclusions about the outcome of the homogenization process depend on whether or not abundance data are incorporated. Location: Data were produced through computer simulation. Methods: The frequency with which occurrence-based similarity indices and abundance-based similarity indices give different views of changes in community similarity, and the conditions under which such differences occurred were assessed using both deterministic and stochastic modelling approaches to simulate species assemblage states. Results: Occurrence-based and abundance-based indices were positively correlated across the set of simulations for both the deterministic and stochastic models. However, in both situations approximately one quarter (25%) of models resulted in contrasting outcomes for the two approaches of calculating changes in compositional similarity; that is, one data type showed a positive value (homogenization), whereas the other showed a negative value (differentiation). Main conclusions: In the majority of cases, species abundances will not change drastically enough after perturbation to produce large differences between homogenization scores measured using occurrence versus abundance information. However, in cases where these changes are large, it is important to recognize that the choice of metric to analyse homogenization trends will influence the qualitative and quantitative conclusions drawn. Studies of real assemblages are therefore necessary to evaluate the role of species abundance in defining the magnitude and direction of changes in community composition across space, and the implications of these changes for native biodiversity.Phillip Cassey, Julie L. Lockwood, Julian D. Olden and Tim M. Blackbur
- …