6 research outputs found

    Shift of the 21+^+_1 state of 10^{10}Be in the ternary cold fission of 252^{252}Cf

    Full text link
    Recent experimental data indicate that in the ternary cold fission of 252^{252}Cf the energy of the first excited state of the accompanying light cluster 10^{10}Be is decreased by an amount ranging between \approx 6 and 26 keV. A model is proposed to calculate the shift of the vibrational 21+^+_1 state in 10^{10}Be when its heavy companions are the even-even nuclei 146^{146}Ba and 96^{96}Sr. The stiffness parameters of the β\beta-vibrations are calculated within the self-consistent Hartree-Fock method with BCS pairing correlations taken into account, and its change is determined by the interaction of the light cluster with the heavy fragments. The results are pointing to a dependence of the shift magnitude and signature on the relative distance between the three clusters and their mutual orientation. Eventually it is the anharmonic perturbation of the spherical vibrator which is responsible for obtaining a negative energy shift of the 21+^+_1 state.Comment: 4 pages, 3 figure

    Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    Full text link
    Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, {\kappa}l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in {\kappa}l, further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ~7nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201

    Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation

    No full text
    Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as κ l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations
    corecore