635 research outputs found
The efficacy of high performance work practices in the Middle East: evidence from Algerian firms
Although there is developing evidence on the effectiveness of global HRM best practices in emerging and developing economies, little is known about the efficacy of those practices in the Middle East. This study examines the impact of high performance work practices (HPWP) on both employee and organisational outcomes in Algerian firms. The results of a firm-level survey show that while HPWP are positively associated with employee work attitudes and motivations, this effect is not converted into organisational-level outcomes. The results are discussed and implications for future research are offered. © 2014 © 2013 Taylor & Francis
Chern-Simons Vortices in Supergravity
We study supersymmetric vortex solutions in three-dimensional abelian gauged
supergravity. First, we construct the general U(1)-gauged D=3, N=2 supergravity
whose scalar sector is an arbitrary Kahler manifold with U(1) isometry. This
construction clarifies the connection between local supersymmetry and the
specific forms of some scalar potentials previously found in the literature --
in particular, it provides the locally supersymmetric embedding of the abelian
Chern-Simons Higgs model. We show that the Killing spinor equations admit
rotationally symmetric vortex solutions with asymptotically conical geometry
which preserve half of the supersymmetry.Comment: 26 pages, LaTeX2
Vortices and extreme black holes: the question of flux expulsion
It has been claimed that extreme black holes exhibit a phenomenon of flux
expulsion for abelian Higgs vortices, irrespective of the relative width of the
vortex to the black hole. Recent work by two of the authors showed a subtlety
in the treatment of the event horizon, which cast doubt on this claim. We
analyse in detail the vortex/extreme black hole system, showing that while flux
expulsion can occur, it does not do so in all cases. We give analytic proofs
for both expulsion and penetration of flux, in each case deriving a bound for
that behaviour. We also present extensive numerical work backing up, and
refining, these claims, and showing in detail how a vortex can end on a black
hole in all situations. We also calculate the backreaction of the vortex on the
geometry, and comment on the more general vortex-black hole system.Comment: 28 pages revtex, 10 figures, minor changes, reference adde
On the complete classification of the unitary N=2 minimal superconformal field theories
Aiming at a complete classification of unitary N=2 minimal models (where the
assumption of space-time supersymmetry has been dropped), it is shown that each
modular invariant candidate of a partition function for such a theory is indeed
the partition function of a minimal model. A family of models constructed via
orbifoldings of either the diagonal model or of the space-time supersymmetric
exceptional models demonstrates that there exists a unitary N=2 minimal model
for every one of the allowed partition functions in the list obtained from
Gannon's work.
Kreuzer and Schellekens' conjecture that all simple current invariants can be
obtained as orbifolds of the diagonal model, even when the extra assumption of
higher-genus modular invariance is dropped, is confirmed in the case of the
unitary N=2 minimal models by simple counting arguments.Comment: 53 pages; Latex; minor changes in v2: intro expanded, references
added, typos corrected, footnote added on p31; renumbering of sections; main
theorem reformulated for clarity, but contents unchanged. Minor revisions in
v3: typos corrected, footnotes 5, 6 added, lemma 1 and section 3.3.2
rewritten for greater generality, section 3.3 review removed. To appear in
Comm. Math. Phy
FERMION ZERO MODES AND BLACK-HOLE HYPERMULTIPLETS WITH RIGID SUPERSYMMETRY
The gravitini zero modes riding on top of the extreme Reissner-Nordstrom
black-hole solution of N=2 supergravity are shown to be normalizable. The
gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions
of N=4 supergravity are also given and found to have finite norms. These norms
are duality invariant. The finiteness and positivity of the norms in both cases
are found to be correlated with the Witten-Israel-Nester construction; however,
we have replaced the Witten condition by the pure-spin-3/2 constraint on the
gravitini. We compare our calculation of the norms with the calculations which
provide the moduli space metric for extreme black holes.
The action of the N=2 hypermultiplet with an off-shell central charge
describes the solitons of N=2 supergravity. This action, in the
Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly
supersymmetric.Comment: 18 pages, LaTe
SU(5) monopoles and non-abelian black holes
We construct spherically and axially symmetric monopoles in SU(5)
Yang-Mills-Higgs theory both in flat and curved space as well as spherical and
axial non-abelian, ''hairy'' black holes. We find that in analogy to the SU(2)
case, the flat space monopoles are either non-interacting (in the BPS limit) or
repelling. In curved space, however, gravity is able to overcome the repulsion
for suitable choices of the Higgs coupling constants and the gravitational
coupling. In addition, we confirm that indeed all qualitative features of
(gravitating) SU(2) monopoles are found as well in the SU(5) case. For the
non-abelian black holes, we compare the behaviour of the solutions in the BPS
limit with that for non-vanishing Higgs self-coupling constants.Comment: 14 Revtex pages, 9 PS-figure
Quark and Lepton Mass Matrices in the SO(10) Grand Unified Theory with Generation Flipping
We investigate the SO(10) grand unified model with generation flipping. The
model contains one extra matter multiplet and it mixes with the
usual matter multiplets when the SO(10) is broken down to SU(5).
We find the parameter region of the model in which the observed quark masses
and mixings are well reproduced. The resulting parameter region is consistent
with the observation that only have a source of hierarchies and
indicates that the mixing between second and third generations tends to be
large in the lepton sector, which is consistent with the observed maximal
mixing of the atmospheric neutrino oscillation. We also show that the model can
accommodate MSW and vacuum oscillation solutions to the solar neutrino deficit
depending on the form of the Majorana mass matrix for the right-handed
neutrinos.Comment: 28 pages, Late
Nucleon Charge and Magnetization Densities from Sachs Form Factors
Relativistic prescriptions relating Sachs form factors to nucleon charge and
magnetization densities are used to fit recent data for both the proton and the
neutron. The analysis uses expansions in complete radial bases to minimize
model dependence and to estimate the uncertainties in radial densities due to
limitation of the range of momentum transfer. We find that the charge
distribution for the proton is significantly broad than its magnetization
density and that the magnetization density is slightly broader for the neutron
than the proton. The neutron charge form factor is consistent with the Galster
parametrization over the available range of Q^2, but relativistic inversion
produces a softer radial density. Discrete ambiguities in the inversion method
are analyzed in detail. The method of Mitra and Kumari ensures compatibility
with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have
been added and several discussions have been clarified with no significant
changes to the conclusions. Now contains 47 pages including 21 figures and 2
table
Galanin pathogenic mutations in temporal lobe epilepsy
Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatmen
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
- âŠ