6 research outputs found

    The stability of LaMnO3 surfaces: A hybrid exchange density functional theory study of an alkaline fuel cell catalyst

    No full text
    LaMnO3 is an inexpensive alternative to precious metals (e.g. platinum) as a catalyst for the oxygen reduction reaction in alkaline fuel cells. In fact, recent studies have shown that among a range of non-noble metal catalysts, LaMnO3 provides the highest catalytic activity. Despite this, very little is known about LaMnO3 in the alkaline fuel cells environment, where the orthorhombic structure is most stable. In order to understand the reactivity of orthorhombic LaMnO3 we must first understand the surface structure. Hence, we have carried out calculations on its electrostatically stable low index surfaces using hybrid-exchange density functional theory, as implemented in CRYSTAL09. For each surface studied the calculated structure and formation energy is discussed. Among the surfaces studied the (100) surface was found to be the most stable with a formation energy of 0.98 J/m2. The surface energies are rationalised in terms of the cleavage of Jahn-Teller distorted Mn-O bonds, the compensation of undercoordination for ions in the terminating layer and relaxation effects. Finally, the equilibrium morphology of orthorhombic LaMnO3 crystals is predicted, allowing us to speculate about likely surface reaction sites

    Thermodynamic stability of LaMnO3 and its competing oxides: A hybrid density functional study of an alkaline fuel cell catalyst

    No full text
    The phase stability of LaMnO3 with respect to its competing oxides is studied using hybrid-exchange density functional theory (DFT) as implemented in CRYSTAL09. The underpinning DFT total-energy calculations are embedded in a thermodynamic framework that takes optimal advantage of error cancellation within DFT. It has been found that by using the ab initio thermodynamic techniques described here, the standard Gibbs formation energies can be calculated to a significantly greater accuracy than was previously reported (a mean error of 1.6% with a maximum individual error of ?3.0%). This is attributed to both the methodology for isolating the chemical potentials of the reference states, as well as the use of the Becke, three-parameter, Lee-Yang-Parr (B3LYP) functional to thoroughly investigate the ground-state energetics of the competing oxides
    corecore