637 research outputs found
Pandemic policies and breastfeeding: A cross-sectional study during the onset of COVID-19 in the United States
The United States is one of the few countries, and the only high-income country, that does not federally mandate protection of postpartum employment through paid postpartum maternity and family leave policies. At the onset of the COVID-19 pandemic in the U.S., stay-at-home orders were implemented nationally, creating a natural experiment in which to document the effects of de facto paid leave on infant feeding practices in the first postpartum year. The purpose of this cross-sectional, mixed-methods study was to describe infant and young child feeding intentions, practices, decision-making, and experiences during the first wave of the COVID-19 pandemic in the U.S. Quantitative and qualitative data were collected March 27–May 31, 2020 via online survey among a convenience sample of respondents, ages 18 years and older, who were currently feeding a child 2 years of age or younger, yielding 1,437 eligible responses. Nearly all (97%) respondents indicated an intention to feed their infant exclusively with human milk in the first 6 months. A majority of respondents who were breastfeeding (66%) reported no change in breastfeeding frequency after the implementation of COVID-19 stay-at-home orders. However, thirty-one percent indicated that they breastfed more frequently due to stay-at-home orders and delayed plans to wean their infant or young child. Key themes drawn from the qualitative data were: emerging knowledge and perceptions of the relationship between COVID-19 and breastfeeding, perceptions of immune factors in human milk, and the social construction of COVID-19 and infant and young child feeding perceptions and knowledge. There were immediate positive effects of stay-at-home policies on human milk feeding practices, even during a time of considerable uncertainty about the safety of breastfeeding and the transmissibility of SARS-CoV-2 via human milk, constrained access to health care services and COVID-19 testing, and no effective COVID-19 vaccines. Federally mandated paid postpartum and family leave are essential to achieving more equitable lactation outcomes
Frequency and distance of transposition of a modified Dissociation element in transgenic tobacco
Effective transposon tagging with the Ac/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysed Ds transposition frequencies and Ds transposition distances in tobacco. An artificial Ds element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability of Ds transposition between different tobacco lines, eight single copy T-DNA transformants were selected. For trans-activation of the Ds elements, different Ac lines were used carrying an unmodified Ac+ element, an immobilized sAc element and a stable Ac element under the control of a heterologous chalcone synthase (chsA) promoter. With all Ac elements, each Ds line showed characteristic and heritable variegation patterns at the seedling level. Similar Ds line-specificity was observed for the frequency by which Ds transpositions were germinally transmitted, as well as for the distances of the Ds transpositions. The sac element induced transposition of Ds late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of these Ds elements (58%) transposed to genetically closed linked sites (≤10 cM)
Search for exoplanets in M31 with pixel-lensing and the PA-99-N2 event revisited
Several exoplanets have been detected towards the Galactic bulge with the
microlensing technique. We show that exoplanets in M31 may also be detected
with the pixel-lensing method, if telescopes making high cadence observations
of an ongoing microlensing event are used. Using a Monte Carlo approach we find
that the mean mass for detectable planetary systems is about .
However, even small mass exoplanets () can cause
significant deviations, which are observable with large telescopes. We
reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the
robustness of the binary lens conclusion for this light curve. Second, we show
that for such long duration and bright microlensing events, the efficiency for
finding planetary-like deviations is strongly enhanced with respect to that
evaluated for all planetary detectable events.Comment: 14 pages, 8 figures. Paper presented at the "II Italian-Pakistani
Workshop on Relativistic Astrophysics, Pescara, July 8-10, 2009. To be
published in a special issue of General Relativity and Gravitation (eds. F.
De Paolis, G.F.R. Ellis, A. Qadir and R. Ruffini
The Pomeron and Gauge/String Duality
The traditional description of high-energy small-angle scattering in QCD has
two components -- a soft Pomeron Regge pole for the tensor glueball, and a hard
BFKL Pomeron in leading order at weak coupling. On the basis of gauge/string
duality, we present a coherent treatment of the Pomeron. In large-N QCD-like
theories, we use curved-space string-theory to describe simultaneously both the
BFKL regime and the classic Regge regime. The problem reduces to finding the
spectrum of a single j-plane Schrodinger operator. For ultraviolet-conformal
theories, the spectrum exhibits a set of Regge trajectories at positive t, and
a leading j-plane cut for negative t, the cross-over point being
model-dependent. For theories with logarithmically-running couplings, one
instead finds a discrete spectrum of poles at all t, where the Regge
trajectories at positive t continuously become a set of slowly-varying and
closely-spaced poles at negative t. Our results agree with expectations for the
BFKL Pomeron at negative t, and with the expected glueball spectrum at positive
t, but provide a framework in which they are unified. Effects beyond the single
Pomeron exchange are briefly discussed.Comment: 68 pages, uses JHEP3.cls, utphys.bst; references added, typos
corrected, and clarifying remarks adde
Tracking Quintessence and Cold Dark Matter Candidates
We study the generation of a kination-dominated phase in the context of a
quintessential model with an inverse-power-law potential and a Hubble-induced
mass term for the quintessence field. The presence of kination is associated
with an oscillating evolution of the quintessence field and the barotropic
index. We find that, in sizeable regions of the parameter space, a tracker
scaling solution can be reached sufficiently early to alleviate the coincidence
problem. Other observational constraints originating from nucleosynthesis, the
inflationary scale, the present acceleration of the universe and the
dark-energy-density parameter can be also met. The impact of this modified
kination-dominated phase on the thermal abundance of cold dark matter
candidates is investigated too. We find that: (i) the enhancement of the relic
abundance of the WIMPs with respect to the standard paradigm, crucially depends
on the hierarchy between the freeze-out temperature and the temperature at
which the extrema in the evolution of the quintessence field are encountered,
and (ii) the relic abundance of e-WIMPs takes its present value close to the
temperature at which the earliest extremum of the evolution of the quintessence
field occurs and, as a consequence, both gravitinos and axinos arise as natural
cold dark matter candidates. In the case of unstable gravitinos, the gravitino
constraint can be satisfied for values of the initial temperature well above
those required in the standard cosmology.Comment: Final versio
Realistic construction of split fermion models
The Standard Model flavor structure can be explained in theories where the
fermions are localized on different points in a compact extra dimension. We
show that models with two bulk scalars compactified on an orbifold can produce
such separations in a natural way. We study the shapes and overlaps of the
fermion wave functions. We show that, generically, realistic models of Gaussian
overlaps are unnatural since they require very large Yukawa couplings between
the fermions and the bulk scalars. We give an example of a five dimensional two
scalar model that accounts naturally for the observed quark masses, mixing
angles and CP violation.Comment: 15 pages, 5 figures, typos corrected, discussion on the implications
of SM rare decay processes added, to appear in PR
Black Holes and Instabilities of Negative Tension Branes
We consider the collision in 2+1 dimensions of a black hole and a negative
tension brane on an orbifold. Because there is no gravitational radiation in
2+1 dimensions, the horizon area shrinks when part of the brane falls through.
This provides a potential violation of the generalized second law of
thermodynamics. However, tracing the details of the dynamical evolution one
finds that it does not proceed from equilibrium configuration to equilibrium
configuration. Instead, a catastrophic space-time singularity develops similar
to the `big crunch' of FRW space-times. In the context of classical
general relativity, our result demonstrates a new instability of constructions
with negative tension branes.Comment: 18 pages, 3 figures, uses RevTeX. Minor typos fixed. References and
one footnote adde
Independence of , Poincare Invariance and the Non-Conservation of Helicity
A relativistic constituent quark model is found to reproduce the recent data
regarding the ratio of proton form factors, . We show that
imposing Poincare invariance leads to substantial violation of the helicity
conservation rule, as well as an analytic result that the ratio
for intermediate values of .Comment: 13 pages, 7 figures, to be submitted to Phys. Rev. C typos corrected,
references added, 1 new figure to show very high Q^2 behavio
Large Extra Dimensions and Decaying KK Recurrences
We suggest the possibility that in ADD type brane-world scenarios, the higher
KK excitations of the graviton may decay to lower ones owing to a breakdown of
the conservation of extra dimensional ``momenta'' and study its implications
for astrophysics and cosmology. We give an explicit realization of this idea
with a bulk scalar field , whose nonzero KK modes acquire vacuum
expectation values. This scenario helps to avoid constraints on large extra
dimensions that come from gamma ray flux bounds in the direction of nearby
supernovae as well as those coming from diffuse cosmological gamma ray
background. It also relaxes the very stringent limits on reheat temperature of
the universe in ADD models.Comment: 16 pages, late
- …