287 research outputs found
Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation
We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey–Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ∼ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is
AgenIA=12.6+1.5−1.2
AIAgen=12.6−1.2+1.5
. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA
Weak gravitational lensing in the red-sequence cluster survey 2
In my thesis I study the projected density distribution of all (dark+baryonic) matter around various selections of galaxies and galaxy clusters in the Red-sequence Cluster Survey 2 (RCS2), one of the largest optical imaging surveys to date. This is done by measuring the tiny distortions in the images of background galaxies induced by the gravitational potential of the foreground objects, which are called the lenses. Comparing this so-called weak gravitational lensing signal to model predictions enables us to determine the total mass of the lenses. We study how the total mass relates to, amongst others, the luminosity of the lenses, and to the total mass in stars, which leads to valuable insight into galaxy formation processes. We also study the anisotropy of the weak lensing signal around galaxies, to constrain the average ellipticity of the dark matter haloes in which these galaxies are embedded. Finally, we measure the relation between the total mass of galaxy clusters and the number of cluster members, and how this relation changes with redshift. This is essential for using cluster counts to constrain cosmological parameters, but also contains information of how clusters form.UBL - phd migration 201
Licenciamento ambiental : herói, vilão ou vítima?
- Divulgação dos SUMÁRIOS das obras recentemente incorporadas ao acervo da Biblioteca Ministro Oscar Saraiva do STJ. Em respeito à lei de Direitos Autorais, não disponibilizamos a obra na íntegra.- Localização na estante: 34:504(81) L698
Stellar mass versus velocity dispersion as tracers of the lensing signal around bulge-dominated galaxies
We present the results of a weak gravitational lensing analysis to determine whether the stellar mass or else the velocity dispersion is more closely related to the amplitude of the lensing signal around galaxies, hence to the projected distribution of dark matter. The lensing signal on smaller scales than the virial radius corresponds most closely to the lensing velocity dispersion in the case of a singular isothermal profile, but is also sensitive on larger scales to the clustering of the haloes. We have selected over 4000 lens galaxies at a redshift z {lt} 0.2 with concentrated (or bulge-dominated) surface brightness profiles from the ~{}300 square degree overlap between the Red-sequence Cluster Survey 2 (RCS2) and the data release 7 (DR7) of the Sloan Digital Sky Survey (SDSS). We consider both the spectroscopic velocity dispersion and a model velocity dispersion (a combination of the stellar mass, the size, and the Sérsic index of a galaxy). Comparing the model and spectroscopic velocity dispersion we find that they correlate well for galaxies with concentrated brightness profiles. We find that the stellar mass and the spectroscopic velocity dispersion trace the amplitude of the lensing signal on small scales equally well. The model velocity dispersion, however, does significantly worse. A possible explanation is that the halo properties that determine the small-scale lensing signal - mainly the total mass - also depend on the structural parameters of galaxies, such as the effective radius and Sérsic index, but we lack data for a definitive conclusion.Large scale structure and cosmolog
Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing
We study the shapes of galaxy dark matter haloes by measuring the anisotropy
of the weak gravitational lensing signal around galaxies in the second
Red-sequence Cluster Survey (RCS2). We determine the average shear anisotropy
within the virial radius for three lens samples: all galaxies with
19<m_r'<21.5, and the `red' and `blue' samples, whose lensing signals are
dominated by massive low-redshift early-type and late-type galaxies,
respectively. To study the environmental dependence of the lensing signal, we
separate each lens sample into an isolated and clustered part and analyse them
separately. We also measure the azimuthal dependence of the distribution of
physically associated galaxies around the lens samples. We find that these
satellites preferentially reside near the major axis of the lenses, and
constrain the angle between the major axis of the lens and the average location
of the satellites to =43.7 deg +/- 0.3 deg for the `all' lenses,
=41.7 deg +/- 0.5 deg for the `red' lenses and =42.0 deg +/- 1.4
deg for the `blue' lenses. For the `all' sample, we find that the anisotropy of
the galaxy-mass cross-correlation function =0.23 +/- 0.12, providing
weak support for the view that the average galaxy is embedded in, and
preferentially aligned with, a triaxial dark matter halo. Assuming an
elliptical Navarro-Frenk-White (NFW) profile, we find that the ratio of the
dark matter halo ellipticity and the galaxy ellipticity
f_h=e_h/e_g=1.50+1.03-1.01, which for a mean lens ellipticity of 0.25
corresponds to a projected halo ellipticity of e_h=0.38+0.26-0.25 if the halo
and the lens are perfectly aligned. For isolated galaxies of the `all' sample,
the average shear anisotropy increases to =0.51+0.26-0.25 and
f_h=4.73+2.17-2.05, whilst for clustered galaxies the signal is consistent with
zero. (abridged)Comment: 28 pages, 23 figues, accepted for publication in A&
The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field
We present new constraints on the relationship between galaxies and their
host dark matter halos, measured from the location of the peak of the
stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at
redshift and over a volume of nearly 0.1~Gpc. We use a unique
combination of deep observations in the CFHTLenS/VIPERS field from the near-UV
to the near-IR, supplemented by secure spectroscopic redshifts,
analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass
function. We interpret our measurements within the halo occupation distribution
(HOD) framework, separating the contributions from central and satellite
galaxies. We find that the SHMR for the central galaxies peaks at with an amplitude of ,
which decreases to for massive halos (). Compared to central galaxies only, the total SHMR (including
satellites) is boosted by a factor 10 in the high-mass regime (cluster-size
halos), a result consistent with cluster analyses from the literature based on
fully independent methods. After properly accounting for differences in
modelling, we have compared our results with a large number of results from the
literature up to : we find good general agreement, independently of the
method used, within the typical stellar-mass systematic errors at low to
intermediate mass () and the statistical
errors above. We have also compared our SHMR results to semi-analytic
simulations and found that the SHMR is tilted compared to our measurements in
such a way that they over- (under-) predict star formation efficiency in
central (satellite) galaxies.Comment: 31 pages, 18 figures, 4 table. Accepted for publication in MNRAS.
Online material available at http://www.cfhtlens.or
KiDS-i-800: Comparing weak gravitational lensing measurements in same-sky surveys
We present a weak gravitational lensing analysis of 815 square degree of
-band imaging from the Kilo-Degree Survey (KiDS--800). In contrast to the
deep -band observations, which take priority during excellent seeing
conditions and form the primary KiDS dataset (KiDS--450), the complementary
yet shallower KiDS--800 spans a wide range of observing conditions. The
overlapping KiDS--800 and KiDS--450 imaging therefore provides a unique
opportunity to assess the robustness of weak lensing measurements. In our
analysis, we introduce two new `null' tests. The `nulled' two-point shear
correlation function uses a matched catalogue to show that the calibrated
KiDS--800 and KiDS--450 shear measurements agree at the level of \%. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy
lensing signal from the full KiDS--800 and KiDS--450 surveys and find
that the measurements agree to \% when the KiDS--800 source
redshift distribution is calibrated using either spectroscopic redshifts, or
the 30-band photometric redshifts from the COSMOS survey.Comment: 24 pages, 20 figures. Submitted to MNRAS. Comments welcom
CFHTLenS: mapping the large-scale structure with gravitational lensing
We present a quantitative analysis of the largest contiguous maps of projected mass density obtained from gravitational lensing shear. We use data from the 154 deg^2 covered by the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). Our study is the first attempt to quantitatively characterize the scientific value of lensing maps, which could serve in the future as a complementary approach to the study of the dark universe with gravitational lensing. We show that mass maps contain unique cosmological information beyond that of traditional two-point statistical analysis techniques.
Using a series of numerical simulations, we first show how, reproducing the CFHTLenS observing conditions, gravitational lensing inversion provides a reliable estimate of the projected matter distribution of large-scale structure. We validate our analysis by quantifying the robustness of the maps with various statistical estimators. We then apply the same process to the CFHTLenS data. We find that the two-point correlation function of the projected mass is consistent with the cosmological analysis performed on the shear correlation function discussed in the CFHTLenS companion papers. The maps also lead to a significant measurement of the third-order moment of the projected mass, which is in agreement with analytic predictions, and to a marginal detection of the fourth-order moment. Tests for residual systematics are found to be consistent with zero for the statistical estimators we used. A new approach for the comparison of the reconstructed mass map to that predicted from the galaxy distribution reveals the existence of giant voids in the dark matter maps as large as 3° on the sky. Our analysis shows that lensing mass maps are not only consistent with the results obtained by the traditional shear approach, but they also appear promising for new techniques such as peak statistics and the morphological analysis of the projected dark matter distribution
- …