321 research outputs found

    Identifying intrinsic and reflexive contributions to low-back stabilization

    Get PDF
    Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive contributions. Upper body sway was evoked using continuous force perturbations at the trunk, while subjects performed a resist or relax task. Frequency response functions (FRFs) and coherences of the admittance (kinematics) and reflexes (sEMG) were obtained. In comparison with the relax task, the resist task resulted in a 61% decrease in admittance and a 73% increase in reflex gain below 1.1 Hz. Intrinsic and reflexive contributions were captured by a physiologically-based, neuromuscular model, including proprioceptive feedback from muscle spindles (position and velocity) and Golgi tendon organs (force). This model described on average 90% of the variance in kinematics and 39% of the variance in sEMG, while resulting parameter values were consistent over subjects

    Electroconvulsive seizures (ECS) do not prevent LPS-induced behavioral alterations and microglial activation

    Get PDF
    Background: Long-term neuroimmune activation is a common finding in major depressive disorder (MDD). Literature suggests a dual effect of electroconvulsive therapy (ECT), a highly effective treatment strategy for MDD, on neuroimmune parameters: while ECT acutely increases inflammatory parameters, such as serum levels of pro-inflammatory cytokines, there is evidence to suggest that repeated ECT sessions eventually result in downregulation of the inflammatory response. We hypothesized that this might be due to ECT-induced attenuation of microglial activity upon inflammatory stimuli in the brain. Methods: Adult male C57Bl/6J mice received a series of ten electroconvulsive seizures (ECS) or sham shocks, followed by an intracerebroventricular (i.c.v.) lipopolysaccharide (LPS) or phosphate-buffered saline (PBS) injection. Brains were extracted and immunohistochemically stained for the microglial marker ionized calcium-binding adaptor molecule 1 (Iba1). In addition, a sucrose preference test and an open-field test were performed to quantify behavioral alterations. Results: LPS induced a short-term reduction in sucrose preference, which normalized within 3 days. In addition, LPS reduced the distance walked in the open field and induced alterations in grooming and rearing behavior. ECS did not affect any of these parameters. Phenotypical analysis of microglia demonstrated an LPS-induced increase in microglial activity ranging from 84 to 213 % in different hippocampal regions (CA3 213 %; CA1 84 %; dentate gyrus 131 %; and hilus 123 %). ECS-induced alterations in microglial activity were insignificant, ranging from -2.6 to 14.3 % in PBS-injected mice and from -20.2 to 6.6 % in LPS-injected mice. Conclusions: We were unable to demonstrate an effect of ECS on LPS-induced microglial activity or behavioral alterations

    Transparency and (no) more in the Political Advertising Regulation

    Get PDF
    The EU has taken its first steps into a sensitive space by proposing a new Regulation on Political Advertising (RPA). Simply put, the RPA does two things, which this commentary will address in turn. First, it replaces national laws on the transparency of political advertising with a single set of rules. These provide progressively more information to citizens who see an ad, to the public through ad libraries, and to regulators and private actors who are authorised to request information. Second, the RPA tightens the GDPR’s ban on using sensitive data for targeted political advertising. It leaves member states free, however, to further regulate the use of political advertising.The RPA takes a number of important steps in political advertising law. It strengthens the transparency of the (so far largely unregulated) online political advertising environment. It expands ad libraries with information on targeting and funding. And it allows a broad range of private actors (including civil society and journalists) to request data from a broad range of companies (including ad agencies and small platforms). At the same time, the RPA not only represents the EU’s most significant effort to address concerns about political advertising’s democratic impact, but (because it fully harmonises transparency) also shapes how individuals, researchers, and national regulators can scrutinise political advertising. It is therefore important to determine whether the regulation lives up to the Commission’s hype

    Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13)

    Get PDF
    Recently, we and others reported a recurrent t(7;12)(q36;p13) found in myeloid malignancies in children < or =18 months of age and associated with a poor prognosis. Fluorescence in situ hybridization studies mapped the 12p13 breakpoint to the first intron of ETV6 and narrowed down the region of 7q36 involved. By using the sequences made public recently by the Human Genome Project, two candidate genes in 7q36 were identified: the homeobox gene HLXB9 and c7orf3, a gene with unknown function. Reverse transcription-PCR of two cases with t(7;12), using primers for c7orf3 and ETV6, was negative. However, reverse transcription-PCR for HLXB9-ETV6 demonstrated alternative splicing; the two major bands corresponded to fusion of exon 1 of HLXB9 to exons 2 and 3, respectively, of ETV6. The reciprocal ETV6-HLXB9 transcript was not detected. It remains to be elucidated if the leukemic phenotype is attributable to the formation of the HLXB9-ETV6 fusion protein, which includes the helix-loop-helix and E26 transformation-specific DNA binding domains of ETV6 or to the disruption of the normal ETV6 protein

    Detection of genetic prognostic markers in uveal melanoma biopsies using fluorescence in situ hybridization

    Get PDF
    PURPOSE: In uveal melanoma, specific chromosomal abnormalities are known to correlate with the risk of metastases; changes in chromosomes 3 and 8q correlate strongly with a decreased survival of the patient, whereas chromosome 6 abnormalities are associated with a better prognosis. Usual

    Positional mapping of loci in the DiGeorge critical region at chromosome 22q11 using a new marker (D22S183)

    Get PDF
    The majority of patients with DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS) and a minority of patients with non-syndromic conotruncal heart defects are hemizygous for a region of chromosome 22q11. The chromosomal region that is commonly deleted is larger than 2 Mb. It has not been possible to narrow the smallest region of overlap (SRO) of the deletions to less than ca 500 kb, which suggests that DGS/VCFS might be a contiguous gene syndrome. The saturation cloning of the SRO is being carried out, and one gene (TUPLE1) has been identified. By using a cosmid probe (M51) and fluorescence in situ hybridization, we show here that the anonymous DNA marker locus D22S183 is within the SRO, between TUPLE1 and D22S75 (probe N25). A second locus with weak homology to D22S183, recognized by cosmid M56, lies immediately outside the common SRO of the DGS and VCFS deletions, but inside the SRO of the DGS deletions. D22S183 sequences are strongly conserved in primates and weaker hybridizing signals are found in DNA of other mammalian species; no transcripts are however detected in polyA+ RNA from various adult human organs. Probe M51 allows fast reliable screening for 22q11 deletions using fluorescence in situ hybridization. A deletion was found in 11 out of 12 DGS patients and in 3 out of 7 VCFS patients. Two patients inherited the deletion from a parent with mild (atypical) symptoms

    The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA insterstrand cross-link-induced double-strand breaks

    Get PDF
    Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination
    • …
    corecore