227 research outputs found

    ROADS—Rover for Bituminous Pavement Distress Survey: An Unmanned Ground Vehicle (UGV) Prototype for Pavement Distress Evaluation

    Get PDF
    Maintenance has a major impact on the financial plan of road managers. To ameliorate road conditions and reduce safety constraints, distress evaluation methods should be efficient and should avoid being time consuming. That is why road cadastral catalogs should be updated periodically, and interventions should be provided for specific management plans. This paper focuses on the setting of an Unmanned Ground Vehicle (UGV) for road pavement distress monitoring, and the Rover for bituminOus pAvement Distress Survey (ROADS) prototype is presented in this paper. ROADS has a multisensory platform fixed on it that is able to collect different parameters. Navigation and environment sensors support a two-image acquisition system which is composed of a high-resolution digital camera and a multispectral imaging sensor. The Pavement Condition Index (PCI) and the Image Distress Quantity (IDQ) are, respectively, calculated by field activities and image computation. The model used to calculate the I-ROADS index from PCI had an accuracy of 74.2%. Such results show that the retrieval of PCI from image-based approach is achievable and values can be categorized as "Good"/"Preventive Maintenance", "Fair"/"Rehabilitation", "Poor"/"Reconstruction", which are ranges of the custom PCI ranting scale and represents a typical repair strategy

    Triazolobenzothiadiazole-Based Copolymers for Polymer Light-Emitting Diodes: Pure Near-Infrared Emission via Optimized Energy and Charge Transfer

    Get PDF
    A series of new near-infrared (NIR) emitting copolymers, based on a low band gap 6-(2-butyloctyl)-4,8-di(thiophen-2-yl)-[1,2,3]triazolo[4′,5′:4,5]benzo[1,2-c]-[1,2,5]thiadiazole (TBTTT) fluorophore copolymerized into a high band gap poly[3,3′-ditetradecyl-2,2′-bithiophene-5,5′-diyl-alt-5-(2-ethylhexyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-diyl] (P2TTPD) host backbone, for polymer light-emitting diode (PLED) applications is reported. PLEDs fabricated from the host polymer (P2TTPD-0) show external quantum efficiencies (EQEs) up to 0.49% at 690 nm, with turn-on voltage (Von) at only 2.4 V. By incorporating the TBTTT segments into the host polymer backbone, pure NIR emission peaking at ca. 900 nm is obtained with Von remaining below 5 V. This work demonstrates that such a low Von can be attributed to efficient intrachain energy and/or charge transfer to the TBTTT sites. When the NIR emitting copolymer (P2TTPD-10) is blended with P2TTPD-0, the TBTTT are confined to well-separated polymer chains. As a result, the EQE from the blend is lower and the Von higher than that obtained from the pure copolymer (P2TTPD-1.0) with equal content of TBTTT. An analogous copolymer (P4T-1.0), consisting of poly[3,3′-ditetradecyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene-5,5′′′-diyl] (P4T) as the host and 1% TBTTT as the NIR emitter, further demonstrates that pure NIR emission can be obtained only through optimized molecular orbital energy levels, as in P2TTPD-1.0, which minimizes chances for either charge trapping or exciton splitting

    Quartz Crystal Microbalances for Space: Design and Testing of a 3D Printed Quasi-Kinematic Support

    Get PDF
    Outgassing or thruster’s generated contaminants are critical for optical surfaces and optical payloads because scientific measurements and, in general, the performances can be degraded or jeopardized by uncontrolled contamination. This is a well-known issue in space technology that is demonstrated by the growing usage of quartz crystal microbalances as a solution for measuring material outgassing properties data and characterizing the on-orbit contamination environment. Operation in space requires compatibility with critical requirements, especially the mechanical and thermal environments to be faced throughout the mission. This work provides the design of a holding structure based on 3D printing technology conceived to meet the environmental characteristics of space application, and in particular, to face harsh mechanical and thermal environments. A kinematic mounting has been conceived to grant compatibility with a large temperature range, and it has been designed by finite element methods to overcome loading during the launch phases and cope with a temperature working range down to cryogenic temperatures. Qualification in such environments has been performed on a mockup by testing a prototype of the holding assembly between −110 °C and 110 °C and allowing verification of the mechanical resistance and stability of the electrical contacts for the embedded heater and sensor in that temperature range. Moreover, mechanical testing in a random environment characterized by an RMS acceleration level of 500 m/s2 and excitation frequency from 20 to 2000 Hz was successfully performed. The testing activity allowed for validation of the proposed design and opened the road to the possible implementation of the proposed design for future flight opportunities, also onboard micro or nanosatellites. Moreover, exploiting the manufacturing technology, the proposed design can implement an easy assembling and mounting of the holding system. At the same time, 3D printing provides a cost-effective solution even for small series production for ground applications, like monitoring the contaminants in thermo-vacuum chambers or clean rooms, or depositions chambers

    Effects of Oscillation Amplitude Variations on QCM Response to Microspheres of Different Sizes

    Get PDF
    Suspended particulate matter (PMx) is one of the most important environmental pollutants. Miniaturized sensors capable of measuring and analyzing PMx are crucial in environmental research fields. The quartz crystal microbalance (QCM) is one of the most well-known sensors that could be used to monitor PMx. In general, in environmental pollution science, PMx is divided into two main categories correlated to particle diameter (e.g., PM < 2.5 µm and PM < 10 µm). QCM-based systems are capable of measuring this range of particles, but there is an important issue that limits the application. In fact, if particles with different diameters are collected on QCM electrodes, the response will be a result of the total mass of particles; there are no simple methods to discriminate the mass of the two categories without the use of a filter or manipulation during sampling. The QCM response depends on particle dimensions, fundamental resonant frequency, the amplitude of oscillation, and system dissipation properties. In this paper, we study the effects of oscillation amplitude variations and fundamental frequency (10, 5, and 2.5 MHz) values on the response, when particle matter with different sizes (2 µm and 10 µm) is deposited on the electrodes. The results showed that the 10 MHz QCM was not capable of detecting the 10 µm particles, and its response was not influenced by oscillation amplitude. On the other hand, the 2.5 MHz QCM detected the diameters of both particles, but only if a low amplitude value was used

    a smart nanofibrous material for adsorbing and detecting elemental mercury in air

    Get PDF
    Abstract. The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM) traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb). Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure), requiring low power, low maintenance, and simple equipment

    Conceptualization of satellite, UAS and UGV downscaling approach for abandoned waste detection and waste to energy prospects

    Get PDF
    The aim of this research is to develop a multiparametric downscaling analysis for the detection of abandoned waste in the environment. This methodology, using a multi-technological approach, involves the adoption VHR satellite images, Unmanned Aircraft System (UAS) and Unmanned Ground Vehicles (UGV). The identified Warning Areas (WA) will be investigated through an in-situ analysis with air quality measurement devices based on advanced sensors mounted on drones. The creation of a Cadastre Accumulation of Abandoned Materials (CAMA) and the related APP will allow the administrations to monitor the phenomenon. Finally, the waste product analysis, retrieved by means of UAS dataset computation, allows to retrieve some interesting prospects regarding Waste to Energy framework. Here, preliminary results obtained by the on-going INTESA Project are presented

    A smart nanofibrous material for adsorbing and detecting elemental mercury in air

    Get PDF
    The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM) traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb). Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure), requiring low power, low maintenance, and simple equipment

    A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)

    Get PDF
    In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field.Peer reviewe
    • …
    corecore