271 research outputs found
ROADS—Rover for Bituminous Pavement Distress Survey: An Unmanned Ground Vehicle (UGV) Prototype for Pavement Distress Evaluation
Maintenance has a major impact on the financial plan of road managers. To ameliorate road conditions and reduce safety constraints, distress evaluation methods should be efficient and should avoid being time consuming. That is why road cadastral catalogs should be updated periodically, and interventions should be provided for specific management plans. This paper focuses on the setting of an Unmanned Ground Vehicle (UGV) for road pavement distress monitoring, and the Rover for bituminOus pAvement Distress Survey (ROADS) prototype is presented in this paper. ROADS has a multisensory platform fixed on it that is able to collect different parameters. Navigation and environment sensors support a two-image acquisition system which is composed of a high-resolution digital camera and a multispectral imaging sensor. The Pavement Condition Index (PCI) and the Image Distress Quantity (IDQ) are, respectively, calculated by field activities and image computation. The model used to calculate the I-ROADS index from PCI had an accuracy of 74.2%. Such results show that the retrieval of PCI from image-based approach is achievable and values can be categorized as "Good"/"Preventive Maintenance", "Fair"/"Rehabilitation", "Poor"/"Reconstruction", which are ranges of the custom PCI ranting scale and represents a typical repair strategy
GADA titer-related risk for organ-specific autoimmunity in LADA subjects subdivided according to gender (NIRAD study 6).
CONTEXT: Latent autoimmune diabetes in adults (LADA) includes a heterogeneous population wherein, based on glutamic acid decarboxylase antibody (GADA) titer, different subgroups of subjects can be identified.
OBJECTIVE: The aim of the present study was to evaluate GADA titer-related risk for β-cell and other organ-specific autoimmunity in LADA subjects.
METHODS: Adult-onset autoimmune diabetes subjects (n=236) and type 2 diabetes (T2DM) subjects (n=450) were characterized for protein tyrosine phosphatase (IA-2IC and IA-2(256-760)), zinc transporter 8 (ZnT8), thyroid peroxidase, (TPO), steroid 21-hydroxylase (21-OH), tissue transglutaminase (tTG), and antiparietal cell (APC) antibodies.
RESULTS: High GADA titer compared to low GADA titer showed a significantly higher prevalence of IA-2IC, IA-2(256-760), ZnT8, TPO, and APC antibodies (P≤0.04 for all comparison). 21-OH antibodies were detected in 3.4% of high GADA titer. A significant decreasing trend was observed from high GADA to low GADA and to T2DM subjects for IA-2(256-760), ZnT8, TPO, tTG, and APC antibodies (P for trend≤0.001). TPO was the only antibody showing a different prevalence between gender; low GADA titer and T2DM female patients had a higher frequency of TPO antibody compared to males (P=0.0004 and P=0.0006, respectively), where the presence of high GADA titer conferred an odds ratio of 8.6 for TPO compared to low GADA titer. After subdividing high and low GADA titer subjects according to the number of antibodies, we observed that 73.3% of high GADA titer subjects were positive for at least one or more antibodies, compared to 38.3% of low GADA titer (P<0.0001).
CONCLUSIONS: In LADA subjects, high GADA titer was associated with a profile of more severe autoimmunity and, in male gender, specifically predisposed to thyroid autoimmunity. A regular screening for other antibodies is recommended in LADA patients according to GADA titer and gender
Triazolobenzothiadiazole-Based Copolymers for Polymer Light-Emitting Diodes: Pure Near-Infrared Emission via Optimized Energy and Charge Transfer
A series of new near-infrared (NIR) emitting copolymers, based on a low band gap 6-(2-butyloctyl)-4,8-di(thiophen-2-yl)-[1,2,3]triazolo[4′,5′:4,5]benzo[1,2-c]-[1,2,5]thiadiazole (TBTTT) fluorophore copolymerized into a high band gap poly[3,3′-ditetradecyl-2,2′-bithiophene-5,5′-diyl-alt-5-(2-ethylhexyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-diyl] (P2TTPD) host backbone, for polymer light-emitting diode (PLED) applications is reported. PLEDs fabricated from the host polymer (P2TTPD-0) show external quantum efficiencies (EQEs) up to 0.49% at 690 nm, with turn-on voltage (Von) at only 2.4 V. By incorporating the TBTTT segments into the host polymer backbone, pure NIR emission peaking at ca. 900 nm is obtained with Von remaining below 5 V. This work demonstrates that such a low Von can be attributed to efficient intrachain energy and/or charge transfer to the TBTTT sites. When the NIR emitting copolymer (P2TTPD-10) is blended with P2TTPD-0, the TBTTT are confined to well-separated polymer chains. As a result, the EQE from the blend is lower and the Von higher than that obtained from the pure copolymer (P2TTPD-1.0) with equal content of TBTTT. An analogous copolymer (P4T-1.0), consisting of poly[3,3′-ditetradecyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene-5,5′′′-diyl] (P4T) as the host and 1% TBTTT as the NIR emitter, further demonstrates that pure NIR emission can be obtained only through optimized molecular orbital energy levels, as in P2TTPD-1.0, which minimizes chances for either charge trapping or exciton splitting
Quartz Crystal Microbalances for Space: Design and Testing of a 3D Printed Quasi-Kinematic Support
Outgassing or thruster’s generated contaminants are critical for optical surfaces and optical payloads because scientific measurements and, in general, the performances can be degraded or jeopardized by uncontrolled contamination. This is a well-known issue in space technology that is demonstrated by the growing usage of quartz crystal microbalances as a solution for measuring material outgassing properties data and characterizing the on-orbit contamination environment. Operation in space requires compatibility with critical requirements, especially the mechanical and thermal environments to be faced throughout the mission. This work provides the design of a holding structure based on 3D printing technology conceived to meet the environmental characteristics of space application, and in particular, to face harsh mechanical and thermal environments. A kinematic mounting has been conceived to grant compatibility with a large temperature range, and it has been designed by finite element methods to overcome loading during the launch phases and cope with a temperature working range down to cryogenic temperatures. Qualification in such environments has been performed on a mockup by testing a prototype of the holding assembly between −110 °C and 110 °C and allowing verification of the mechanical resistance and stability of the electrical contacts for the embedded heater and sensor in that temperature range. Moreover, mechanical testing in a random environment characterized by an RMS acceleration level of 500 m/s2 and excitation frequency from 20 to 2000 Hz was successfully performed. The testing activity allowed for validation of the proposed design and opened the road to the possible implementation of the proposed design for future flight opportunities, also onboard micro or nanosatellites. Moreover, exploiting the manufacturing technology, the proposed design can implement an easy assembling and mounting of the holding system. At the same time, 3D printing provides a cost-effective solution even for small series production for ground applications, like monitoring the contaminants in thermo-vacuum chambers or clean rooms, or depositions chambers
Effects of Oscillation Amplitude Variations on QCM Response to Microspheres of Different Sizes
Suspended particulate matter (PMx) is one of the most important environmental pollutants. Miniaturized sensors capable of measuring and analyzing PMx are crucial in environmental research fields. The quartz crystal microbalance (QCM) is one of the most well-known sensors that could be used to monitor PMx. In general, in environmental pollution science, PMx is divided into two main categories correlated to particle diameter (e.g., PM < 2.5 µm and PM < 10 µm). QCM-based systems are capable of measuring this range of particles, but there is an important issue that limits the application. In fact, if particles with different diameters are collected on QCM electrodes, the response will be a result of the total mass of particles; there are no simple methods to discriminate the mass of the two categories without the use of a filter or manipulation during sampling. The QCM response depends on particle dimensions, fundamental resonant frequency, the amplitude of oscillation, and system dissipation properties. In this paper, we study the effects of oscillation amplitude variations and fundamental frequency (10, 5, and 2.5 MHz) values on the response, when particle matter with different sizes (2 µm and 10 µm) is deposited on the electrodes. The results showed that the 10 MHz QCM was not capable of detecting the 10 µm particles, and its response was not influenced by oscillation amplitude. On the other hand, the 2.5 MHz QCM detected the diameters of both particles, but only if a low amplitude value was used
a smart nanofibrous material for adsorbing and detecting elemental mercury in air
Abstract. The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM) traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb). Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure), requiring low power, low maintenance, and simple equipment
Conceptualization of satellite, UAS and UGV downscaling approach for abandoned waste detection and waste to energy prospects
The aim of this research is to develop a multiparametric downscaling analysis for the detection of abandoned waste in the environment. This methodology, using a multi-technological approach, involves the adoption VHR satellite images, Unmanned Aircraft System (UAS) and Unmanned Ground Vehicles (UGV). The identified Warning Areas (WA) will be investigated through an in-situ analysis with air quality measurement devices based on advanced sensors mounted on drones. The creation of a Cadastre Accumulation of Abandoned Materials (CAMA) and the related APP will allow the administrations to monitor the phenomenon. Finally, the waste product analysis, retrieved by means of UAS dataset computation, allows to retrieve some interesting prospects regarding Waste to Energy framework. Here, preliminary results obtained by the on-going INTESA Project are presented
- …