3,010 research outputs found
Curve crossing in linear potential grids: the quasidegeneracy approximation
The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S.
Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to
evaluate transition amplitudes for the problem of curve crossing in linear
potential grids involving two sets of parallel potentials. The approximation
describes phenomena, such as counterintuitive transitions and saturation
(incomplete population transfer), not predictable by the assumption of
independent crossings. Also, a new kind of oscillations due to quantum
interference (different from the well-known St\"uckelberg oscillations) is
disclosed, and its nature discussed. The approximation can find applications in
many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig,
submitted to Physical Review
Resonantly suppressed transmission and anomalously enhanced light absorption in ultrathin metal films
We study light diffraction in the periodically modulated ultrathin metal
films both analytically and numerically. Without modulation these films are
almost transparent. The periodicity results in the anomalous effects, such as
suppression of the transmittance accompanied by a strong enhancement of the
absorptivity and specular reflectivity, due to excitation of the surface
plasmon polaritons. These phenomena are opposite to the widely known enhanced
transparency of periodically modulated optically thick metal films. Our
theoretical analysis can be a starting point for the experimental investigation
of these intriguing phenomena.Comment: 4 pages, 5 figure
Analytic calculation of nonadiabatic transition probabilities from monodromy of differential equations
The nonadiabatic transition probabilities in the two-level systems are
calculated analytically by using the monodromy matrix determining the global
feature of the underlying differential equation. We study the time-dependent
2x2 Hamiltonian with the tanh-type plus sech-type energy difference and with
constant off-diagonal elements as an example to show the efficiency of the
monodromy approach. The application of this method to multi-level systems is
also discussed.Comment: 13 pages, 2 figure
A theoretical and experimental investigation on the SHS synthesis of (HfTiCN)-TiB2 high-entropy composite
In this work, a fundamental possibility of obtaining a high-entropy ceramic (HfTiCN)-TiB2 composite material by the coupled self-propagating high-temperature synthesis is shown. To search for a stable fixed composition of the HfTiCN compound, the USPEX code was used with the CASTEP interface at 0K. According to the XRD analysis, the obtained SHS product is represented by HfTiCN phase (60 wt%) and TiB2 phase (40 wt%). Based on the results of XRD, elemental analysis, and the heat pattern of combustion of the Hf-Ti-C-N-B powder mixture, a probable mechanism for the formation of the (HfTiCN)-TiB2 composite material during the coupled self-propagating high-temperature synthesis was proposed
- …