382 research outputs found

    M-Theory of Matrix Models

    Full text link
    Small M-theories unify various models of a given family in the same way as the M-theory unifies a variety of superstring models. We consider this idea in application to the family of eigenvalue matrix models: their M-theory unifies various branches of Hermitean matrix model (including Dijkgraaf-Vafa partition functions) with Kontsevich tau-function. Moreover, the corresponding duality relations look like direct analogues of instanton and meron decompositions, familiar from Yang-Mills theory.Comment: 12 pages, contribution to the Proceedings of the Workshop "Classical and Quantum Integrable Systems", Protvino, Russia, January, 200

    Partition Functions of Matrix Models as the First Special Functions of String Theory I. Finite Size Hermitean 1-Matrix Model

    Full text link
    Even though matrix model partition functions do not exhaust the entire set of tau-functions relevant for string theory, they seem to be elementary building blocks for many others and they seem to properly capture the fundamental symplicial nature of quantum gravity and string theory. We propose to consider matrix model partition functions as new special functions. This means they should be investigated and put into some standard form, with no reference to particular applications. At the same time, the tables and lists of properties should be full enough to avoid discoveries of unexpected peculiarities in new applications. This is a big job, and the present paper is just a step in this direction. Here we restrict our consideration to the finite-size Hermitean 1-matrix model and concentrate mostly on its phase/branch structure arising when the partition function is considered as a D-module. We discuss the role of the CIV-DV prepotential (as generating a possible basis in the linear space of solutions to the Virasoro constraints, but with a lack of understanding of why and how this basis is distinguished) and evaluate first few multiloop correlators, which generalize semicircular distribution to the case of multitrace and non-planar correlators.Comment: 64 pages, LaTe

    Fermionic construction of partition function for multi-matrix models and multi-component TL hierarchy

    Full text link
    We use pp-component fermions (p=2,3,...)(p=2,3,...) to present (2p2)N(2p-2)N-fold integrals as a fermionic expectation value. This yields fermionic representation for various (2p2)(2p-2)-matrix models. Links with the pp-component KP hierarchy and also with the pp-component TL hierarchy are discussed. We show that the set of all (but two) flows of pp-component TL changes standard matrix models to new ones.Comment: 16 pages, submitted to a special issue of Theoretical and Mathematical Physic

    Fermionic approach to the evaluation of integrals of rational symmetric functions

    Full text link
    We use the fermionic construction of two-matrix model partition functions to evaluate integrals over rational symmetric functions. This approach is complementary to the one used in the paper ``Integrals of Rational Symmetric Functions, Two-Matrix Models and Biorthogonal Polynomials'' \cite{paper2}, where these integrals were evaluated by a direct method.Comment: 34 page

    Non-Linear Algebra and Bogolubov's Recursion

    Full text link
    Numerous examples are given of application of Bogolubov's forest formula to iterative solutions of various non-linear equations: one and the same formula describes everything, from ordinary quadratic equation to renormalization in quantum field theory.Comment: LaTex, 21 page

    Electroproduction, photoproduction, and inverse electroproduction of pions in the first resonance region

    Full text link
    Methods are set forth for determining the hadron electromagnetic structure in the sub-NNˉN\bar{N}-threshold timelike region of the virtual-photon ``mass'' and for investigating the nucleon weak structure in the spacelike region from experimental data on the process πNe+eN\pi N\to e^+e^- N at low energies. These methods are formulated using the unified description of photoproduction, electroproduction, and inverse electroproduction of pions in the first resonance region in the framework of the dispersion-relation model and on the basis of the model-independent properties of inverse electroproduction. Applications of these methods are also shown.Comment: The revised published version; Revtex4, 18 pages, 6 figure
    corecore