181 research outputs found

    Detection and Verification of Mammalian Mirtrons by Northern Blotting

    Get PDF
    microRNAs (miRNAs) have vital roles in regulating gene expression—contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes

    Large-Scale Identification of Mirtrons in Arabidopsis and Rice

    Get PDF
    A new catalog of microRNA (miRNA) species called mirtrons has been discovered in animals recently, which originate from spliced introns of the gene transcripts. However, only one putative mirtron, osa-MIR1429, has been identified in rice (Oryza sativa). We employed a high-throughput sequencing (HTS) data- and structure-based approach to do a genome-wide search for the mirtron candidate in both Arabidopsis (Arabidopsis thaliana) and rice. Five and eighteen candidates were discovered in the two plants respectively. To investigate their biological roles, the targets of these mirtrons were predicted and validated based on degradome sequencing data. The result indicates that the mirtrons could guide target cleavages to exert their regulatory roles post-transcriptionally, which needs further experimental validation

    The evolutionary dynamics of microRNAs in domestic mammals

    Get PDF
    MiRNAs are crucial regulators of gene expression found across both the plant and animal kingdoms. While the number of annotated miRNAs deposited in miRBase has greatly increased in recent years, few studies provided comparative analyses across sets of related species, or investigated the role of miRNAs in the evolution of gene regulation. We generated small RNA libraries across 5 mammalian species (cow, dog, horse, pig and rabbit) from 4 different tissues (brain, heart, kidney and testis). We identified 1676 miRBase and 413 novel miRNAs by manually curating the set of computational predictions obtained from miRCat and miRDeep2. Our dataset spanning five species has enabled us to investigate the molecular mechanisms and selective pressures driving the evolution of miRNAs in mammals. We highlight the important contributions of intronic sequences (366 orthogroups), duplication events (135 orthogroups) and repetitive elements (37 orthogroups) in the emergence of new miRNA loci. We use this framework to estimate the patterns of gains and losses across the phylogeny, and observe high levels of miRNA turnover. Additionally, the identification of lineage-specific losses enables the characterisation of the selective constraints acting on the associated target sites. Compared to the miRBase subset, novel miRNAs tend to be more tissue specific. 20 percent of novel orthogroups are restricted to the brain, and their target repertoires appear to be enriched for neuron activity and differentiation processes. These findings may reflect an important role for young miRNAs in the evolution of brain expression plasticity. Many seed sequences appear to be specific to either the cow or the dog. Analyses on the associated targets highlight the presence of several genes under artificial positive selection, suggesting an involvement of these miRNAs in the domestication process. Altogether, we provide an overview on the evolutionary mechanisms responsible for miRNA turnover in 5 domestic species, and their possible contribution to the evolution of gene regulation

    Genome sequences of four cluster P mycobacteriophages

    Get PDF
    Four bacteriophages infecting Mycobacterium smegmatis mc2155 (three belonging to subcluster P1 and one belonging to subcluster P2) were isolated from soil and sequenced. All four phages are similar in the left arm of their genomes, but the P2 phage differs in the right arm. All four genomes contain features of temperate phages

    Gis1 and Rph1 Regulate Glycerol and Acetate Metabolism in Glucose Depleted Yeast Cells

    Get PDF
    Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1

    Comparative genomics of Cluster O mycobacteriophages

    Get PDF
    Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange

    Simplification and Shift in Cognition of Political Difference: Applying the Geometric Modeling to the Analysis of Semantic Similarity Judgment

    Get PDF
    Perceiving differences by means of spatial analogies is intrinsic to human cognition. Multi-dimensional scaling (MDS) analysis based on Minkowski geometry has been used primarily on data on sensory similarity judgments, leaving judgments on abstractive differences unanalyzed. Indeed, analysts have failed to find appropriate experimental or real-life data in this regard. Our MDS analysis used survey data on political scientists' judgments of the similarities and differences between political positions expressed in terms of distance. Both distance smoothing and majorization techniques were applied to a three-way dataset of similarity judgments provided by at least seven experts on at least five parties' positions on at least seven policies (i.e., originally yielding 245 dimensions) to substantially reduce the risk of local minima. The analysis found two dimensions, which were sufficient for mapping differences, and fit the city-block dimensions better than the Euclidean metric in all datasets obtained from 13 countries. Most city-block dimensions were highly correlated with the simplified criterion (i.e., the left–right ideology) for differences that are actually used in real politics. The isometry of the city-block and dominance metrics in two-dimensional space carries further implications. More specifically, individuals may pay attention to two dimensions (if represented in the city-block metric) or focus on a single dimension (if represented in the dominance metric) when judging differences between the same objects. Switching between metrics may be expected to occur during cognitive processing as frequently as the apparent discontinuities and shifts in human attention that may underlie changing judgments in real situations occur. Consequently, the result has extended strong support for the validity of the geometric models to represent an important social cognition, i.e., the one of political differences, which is deeply rooted in human nature

    The economic case for prioritizing governance over financial incentives in REDD+

    Get PDF
    This article contributes to the ongoing debate on the role of public policies and financial incentives in Reducing Emissions from Deforestation and forest Degradation (REDD+). It argues that the subordination of policies to results-based payments for emission reductions causes severe economic inefficiencies affecting the opportunity cost, transaction cost and economic rent of the programme. Such problems can be addressed by establishing sound procedural, land and financial governance at the national level, before REDD+ economic incentives are delivered at scale. Consideration is given to each governance dimension, the entry points for policy intervention and the impact on costs. International support must consider the financial and political cost of governance reforms, and use a pay-for-results ethos based on output and outcome indicators. This can be done in the readiness process but only if the latter’s legal force, scope, magnitude and time horizon are adequately reconsidered. In sum, the paper provides ammunition for the institutionalist argument that UNFCCC Parties must prioritise governance reform between now and the entry into force of the new climate agreement in 2020, and specific recommendations about how this can be done: only by doing so will they create the basis for the programme’s financial sustainability

    Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    Get PDF
    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology
    • …
    corecore