14,172 research outputs found

    Phagocyte proteinases in multiple trauma and sepsis

    Get PDF

    Cationic Alkylaluminum-Complexed Zirconocene Hydrides: NMR-Spectroscopic Identification, Crystallographic Structure Determination, and Interconversion with Other Zirconocene Cations

    Get PDF
    The ansa-zirconocene complex rac-Me_2Si(1-indenyl)_2ZrCl_2 ((SBI)ZrCl_2) reacts with diisobutylaluminum hydride and trityl tetrakis(perfluorophenyl)borate in hydrocarbon solutions to give the cation [(SBI)Zr(μ-H)_3(Al^iBu_2)_2]^+, the identity of which is derived from NMR data and supported by a crystallographic structure determination. Analogous reactions proceed with many other zirconocene dichloride complexes. [(SBI)Zr(μ-H)_3(Al^iBu2)_2]^+ reacts reversibly with ClAl^iBu_2 to give the dichloro-bridged cation [(SBI)Zr(μ-Cl)_2Al^iBu_2]^+. Reaction with AlMe_3 first leads to mixed-alkyl species [(SBI)Zr(μ-H)_3(AlMe_x^iBu_(2−x))_2^]+ by exchange of alkyl groups between aluminum centers. At higher AlMe_3/Zr ratios, [(SBI)Zr(μ-Me)_2AlMe_2]^+, a constituent of methylalumoxane-activated catalyst systems, is formed in an equilibrium, in which the hydride cation [(SBI)Zr(μ-H)_3(AlR_2)_2]^+ strongly predominates at comparable HAl^iBu_2 and AlMe_3 concentrations, thus implicating the presence of this hydride cation in olefin polymerization catalyst systems

    "Tolerization" of human T-helper cell clones by chronic exposure to alloantigen

    Get PDF
    Induction of clonal anergy in T-helper (Th) cells may have a role in regulating immune responses. A model system for studying Th cell tolerization at the clonal level in vitro could be useful for investigating the mechanisms involved. Accordingly, alloreactive helper cells were maintained in culture with interleukin 2 (IL 2) by intermittent stimulation with specific antigen. Regardless of the frequency of antigen stimulation, clones of age less than ca. 35 population doublings (PD) were found to undergo antigen-specific autocrine clonal expansion in the absence of exogenous IL 2. Such young clones (designated as phase I) could therefore not be "tolerized" by frequent exposure to antigen. In contrast, most clones of age greater than ca. 35 PD could be tolerized by frequent exposure to antigen (designated as phase II clones). Their autocrine proliferation was then blocked, although they still recognized antigen specifically as shown by their retained ability to secrete interferon-gamma (IFN-gamma) and granulocyte-macrophage colony stimulating factor (GM-CSF). The mechanism of response failure involved both an inability to upregulate IL 2 receptors in the absence of exogenous IL 2, as well as an inability to secrete IL 2. These defects were not overcome by stimulation with mitogens or calcium ionophore and phorbol esther in place of alloantigen. T-cell receptor, alpha, beta, and gamma-chain gene rearrangements remained identical in phase I and phase II clones. Tolerization of phase II clones could be avoided by increasing the period between antigen exposures. Despite this, whether or not phase II cells were capable of autocrine proliferation, they were found to have acquired the novel function of inducing suppressive activity in fresh lymphocytes. Suppressor-induction was blocked by the broadly reactive MHC class II-specific monoclonal antibody (moAb) TU39, but not by moAb preferentially reacting only with HLA-DR, DQ, or DP. Sequential immunoprecipitation on T-cell clones showed the presence of a putative non-DR, DQ, DP, TU39+ molecule on phase II clones. However, this molecule was also found on phase I clones. The nature of the TU39-blockable suppressor-inducing determinant present on phase II but not on (most) phase I clones thus remains to be clarified. In addition to suppressor-induction activity, phase II clones also acquired lytic potential as measured in a lectin approximation system. Cytotoxic (CTX) potential was also not influenced by the frequency of antigenic stimulation and could be viewed as a constitutive modulation of clonal functio

    Potential of Interplanetary Torques and Solar Modulation for Triggering Terrestrial Atmospheric and Lithospheric Events

    Get PDF
    The Sun is forced into an orbit around the barycenter of the solar system because of the changing mass distribution of the planets. Solar-planetary-lunar dynamic relationships may form a new basis for understanding and predicting cyclic solar forcing functions on the Earth's climate.Comment: Invited Paper at the Fourth UN/ESA Workshop on Basic Space Science, Cairo, Egypt, July 1994. 7 pages LaTeX. Accepted for publication in the journal Earth, Moon, and Planet

    Geometric scaling in high-energy QCD at nonzero momentum transfer

    Full text link
    We show how one can obtain geometric scaling properties from the Balitsky-Kovchegov (BK) equation. We start by explaining how, this property arises for the b-independent BK equation. We show that it is possible to extend this model to the full BK equation including momentum transfer. The saturation scale behaves like max(q,Q_T) where q is the momentum transfer and Q_T a typical scale of the target.Comment: 4 pages, 2 figures. Talk given by G. Soyez at the "Rencontres de Moriond", 12-19 March 2005, La Thuile, Ital

    Patient-reported outcomes following flexible sigmoidoscopy screening for colorectal cancer in a demonstration screening programme in the UK

    Get PDF
    <p>OBJECTIVES: Flexible sigmoidoscopy (FS) screening for colorectal cancer will be introduced into the National Cancer Screening Programmes in England in 2013. Patient-reported outcome measures (PROMs) from trial participants indicate high acceptability and no adverse physical or psychological consequences, but this may not generalize to routine screening in the community. This study examined PROMs in a community-based FS screening programme.</p> <p>METHODS: Eligible adults aged 58-59 (n = 2016) registered at 34 London general practices were mailed a National Health Service-endorsed invitation to attend FS screening. Pain and side-effects were assessed in a 'morning-after' questionnaire, and satisfaction was assessed in a three-month follow-up questionnaire. Anxiety, self-rated health and colorectal symptoms were assessed at prescreening and follow-up.</p> <p>RESULTS: In total, 1020 people attended screening and were included in the current analyses, of whom 913 (90%) returned the morning-after questionnaire, and 674 (66%) the follow-up questionnaire. The prescreening questionnaire had been completed by 751 (74%) of those who attended. The majority (87%) of respondents reported no pain or mild pain, and the most frequent side-effect (wind) was only experienced more than mildly by 16%. Satisfaction was extremely high, with 98% glad they had the test; 97% would encourage a friend to have it. From prescreening to follow-up there were no changes in anxiety or self-rated health, and the number of colorectal symptoms declined. Satisfaction and changes in wellbeing were not moderated by gender, deprivation, ethnicity or screening outcome.</p> <p>CONCLUSIONS: PROMs indicate high acceptability of FS screening in 58-59 year olds, with no adverse effects on colorectal symptoms, health status or psychological wellbeing.</p&gt

    Ribonucleoparticle-independent transport of proteins into mammalian microsomes

    Get PDF
    There are at least two different mechanisms for the transport of secretory proteins into the mammalian endoplasmic reticulum. Both mechanisms depend on the presence of a signal peptide on the respective precursor protein and involve a signal peptide receptor on the cis-side and signal peptidase on the trans-side of the membrane. Furthermore, both mechanisms involve a membrane component with a cytoplasmically exposed sulfhydryl. The decisive feature of the precursor protein with respect to which of the two mechanisms is used is the chain length of the polypeptide. The critical size seems to be around 70 amino acid residues (including the signal peptide). The one mechanism is used by precursor proteins larger than about 70 amino acid residues and involves two cytosolic ribonucleoparticles and their receptors on the microsomal surface. The other one is used by small precursor proteins and relies on the mature part within the precursor molecule and a cytosolic ATPase

    Continuous phase transitions with a convex dip in the microcanonical entropy

    Full text link
    The appearance of a convex dip in the microcanonical entropy of finite systems usually signals a first order transition. However, a convex dip also shows up in some systems with a continuous transition as for example in the Baxter-Wu model and in the four-state Potts model in two dimensions. We demonstrate that the appearance of a convex dip in those cases can be traced back to a finite-size effect. The properties of the dip are markedly different from those associated with a first order transition and can be understood within a microcanonical finite-size scaling theory for continuous phase transitions. Results obtained from numerical simulations corroborate the predictions of the scaling theory.Comment: 8 pages, 7 figures, to appear in Phys. Rev.
    corecore