6,020 research outputs found
HepForge: A lightweight development environment for HEP software
Setting up the infrastructure to manage a software project can become a task
as significant writing the software itself. A variety of useful open source
tools are available, such as Web-based viewers for version control systems,
"wikis" for collaborative discussions and bug-tracking systems, but their use
in high-energy physics, outside large collaborations, is insubstantial.
Understandably, physicists would rather do physics than configure project
management tools.
We introduce the CEDAR HepForge system, which provides a lightweight
development environment for HEP software. Services available as part of
HepForge include the above-mentioned tools as well as mailing lists, shell
accounts, archiving of releases and low-maintenance Web space. HepForge also
exists to promote best-practice software development methods and to provide a
central repository for re-usable HEP software and phenomenology codes.Comment: 3 pages, 0 figures. To be published in proceedings of CHEP06. Refers
to the HepForge facility at http://hepforge.cedar.ac.u
HepData and JetWeb: HEP data archiving and model validation
The CEDAR collaboration is extending and combining the JetWeb and HepData
systems to provide a single service for tuning and validating models of
high-energy physics processes. The centrepiece of this activity is the fitting
by JetWeb of observables computed from Monte Carlo event generator events
against their experimentally determined distributions, as stored in HepData.
Caching the results of the JetWeb simulation and comparison stages provides a
single cumulative database of event generator tunings, fitted against a wide
range of experimental quantities. An important feature of this integration is a
family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0
Snowmass 2001: Jet Energy Flow Project
Conventional cone jet algorithms arose from heuristic considerations of LO
hard scattering coupled to independent showering. These algorithms implicitly
assume that the final states of individual events can be mapped onto a unique
set of jets that are in turn associated with a unique set of underlying hard
scattering partons. Thus each final state hadron is assigned to a unique
underlying parton. The Jet Energy Flow (JEF) analysis described here does not
make such assumptions. The final states of individual events are instead
described in terms of flow distributions of hadronic energy. Quantities of
physical interest are constructed from the energy flow distribution summed over
all events. The resulting analysis is less sensitive to higher order
perturbative corrections and the impact of showering and hadronization than the
standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on
QCD and Strong Interactions at Snowmass 200
LCG MCDB -- a Knowledgebase of Monte Carlo Simulated Events
In this paper we report on LCG Monte Carlo Data Base (MCDB) and software
which has been developed to operate MCDB. The main purpose of the LCG MCDB
project is to provide a storage and documentation system for sophisticated
event samples simulated for the LHC collaborations by experts. In many cases,
the modern Monte Carlo simulation of physical processes requires expert
knowledge in Monte Carlo generators or significant amount of CPU time to
produce the events. MCDB is a knowledgebase mainly dedicated to accumulate
simulated events of this type. The main motivation behind LCG MCDB is to make
the sophisticated MC event samples available for various physical groups. All
the data from MCDB is accessible in several convenient ways. LCG MCDB is being
developed within the CERN LCG Application Area Simulation project
Photon Structure and Quantum Fluctuation
Photon structure derives from quantum fluctuation in quantum field theory to
fermion and anti-fermion, and has been an experimentally established feature of
electrodynamics since the discovery of the positron. In hadronic physics, the
observation of factorisable photon structure is similarly a fundamental test of
the quantum field theory Quantum Chromodynamics (QCD). An overview of
measurements of hadronic photon structure in e+e- and ep interactions is
presented, and comparison made with theoretical expectation, drawing on the
essential features of photon fluctuation into quark and anti-quark in QCD.Comment: 29 pages, 15 figures, to appear in Philosophical Transactions of the
Royal Society of London (Series A: Mathematical, Physical and Engineering
Sciences
Innermost stable circular orbits around relativistic rotating stars
We investigate the innermost stable circular orbit (ISCO) of a test particle
moving on the equatorial plane around rotating relativistic stars such as
neutron stars. First, we derive approximate analytic formulas for the angular
velocity and circumferential radius at the ISCO making use of an approximate
relativistic solution which is characterized by arbitrary mass, spin, mass
quadrupole, current octapole and mass -pole moments. Then, we show that
the analytic formulas are accurate enough by comparing them with numerical
results, which are obtained by analyzing the vacuum exterior around numerically
computed geometries for rotating stars of polytropic equation of state. We
demonstrate that contribution of mass quadrupole moment for determining the
angular velocity and, in particular, the circumferential radius at the ISCO
around a rapidly rotating star is as important as that of spin.Comment: 12 pages, 2 figures, accepted for publication in Phys. Rev.
Notes on the integration of numerical relativity waveforms
A primary goal of numerical relativity is to provide estimates of the wave
strain, , from strong gravitational wave sources, to be used in detector
templates. The simulations, however, typically measure waves in terms of the
Weyl curvature component, . Assuming Bondi gauge, transforming to the
strain reduces to integration of twice in time. Integrations
performed in either the time or frequency domain, however, lead to secular
non-linear drifts in the resulting strain . These non-linear drifts are not
explained by the two unknown integration constants which can at most result in
linear drifts. We identify a number of fundamental difficulties which can arise
from integrating finite length, discretely sampled and noisy data streams.
These issues are an artifact of post-processing data. They are independent of
the characteristics of the original simulation, such as gauge or numerical
method used. We suggest, however, a simple procedure for integrating numerical
waveforms in the frequency domain, which is effective at strongly reducing
spurious secular non-linear drifts in the resulting strain.Comment: 23 pages, 10 figures, matches final published versio
Quasars: a supermassive rotating toroidal black hole interpretation
A supermassive rotating toroidal black hole (TBH) is proposed as the
fundamental structure of quasars and other jet-producing active galactic
nuclei. Rotating protogalaxies gather matter from the central gaseous region
leading to the birth of massive toroidal stars whose internal nuclear reactions
proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse
produces a slender ring-shaped TBH remnant. These events are typically the
first supernovae of the host galaxies. Given time the TBH mass increases
through continued accretion by several orders of magnitude, the event horizon
swells whilst the central aperture shrinks. The difference in angular
velocities between the accreting matter and the TBH induces a magnetic field
that is strongest in the region of the central aperture and innermost
ergoregion. Due to the presence of negative energy states when such a
gravitational vortex is immersed in an electromagnetic field, circumstances are
near ideal for energy extraction via non-thermal radiation including the
Penrose process and superradiant scattering. This establishes a self-sustaining
mechanism whereby the transport of angular momentum away from the quasar by
relativistic bi-directional jets reinforces both the modulating magnetic field
and the TBH/accretion disk angular velocity differential. Quasar behaviour is
extinguished once the BH topology becomes spheroidal. Similar mechanisms may be
operating in microquasars, SNe and GRBs when neutron density or BH tori arise.
In certain circumstances, long-term TBH stability can be maintained by a
negative cosmological constant, otherwise the classical topology theorems must
somehow be circumvented. Preliminary evidence is presented that Planck-scale
quantum effects may be responsible.Comment: 26 pages, 14 figs, various corrections and enhancements, final
versio
The Globular Cluster Systems of NGC 1400 and NGC 1407
The two brightest elliptical galaxies in the Eridanus A group, NGC 1400 and
NGC 1407, have been observed in both the Washington T_1 and Kron-Cousins I
filters to obtain photometry of their globular cluster systems (GCSs). This
group of galaxies is of particular interest due to its exceptionally high M/L
value, previously estimated at ~3000h, making this cluster highly
dark-matter-dominated. NGC 1400's radial velocity (549 km/s) is extremely low
compared to that of the central galaxy of Eridanus A (NGC 1407 with =
1766 km/s) and the other members of the system, suggesting that it is a
foreground galaxy projected by chance onto the cluster. Using the shapes of the
globular cluster luminosity functions, however, we derive distances of 17.6 +/-
3.1 Mpc to NGC 1407 and 25.4 +/- 7.0 Mpc to NGC 1400. These results support
earlier conclusions that NGC 1400 is at the distance of Eridanus A and
therefore has a large peculiar velocity. Specific frequencies are also derived
for these galaxies, yielding values of S_N = 4.0 +/- 1.3 for NGC 1407 and S_N =
5.2 +/- 2.0 for NGC 1400. In this and other respects, these two galaxies have
GCSs which are consistent with those observed in other galaxies.Comment: 14 pages (AASTeX), 3 postscript figures, submitted to the
Astronomical Journa
- …