1,171 research outputs found
Holstein model and Peierls instability in 1D boson-fermion lattice gases
We study an ultracold bose-fermi mixture in a one dimensional optical
lattice. When boson atoms are heavier then fermion atoms the system is
described by an adiabatic Holstein model, exhibiting a Peierls instability for
commensurate fermion filling factors. A Bosonic density wave with a wavenumber
of twice the Fermi wavenumber will appear in the quasi one-dimensional system.Comment: 5 pages, 4 figure
On the conversion efficiency of ultracold fermionic atoms to bosonic molecules via Feshbach resonances
We explain why the experimental efficiency observed in the conversion of
ultracold Fermi gases of K and Li atoms into diatomic Bose gases
is limited to 0.5 when the Feshbach resonance sweep rate is sufficiently slow
to pass adiabatically through the Landau Zener transition but faster than ``the
collision rate'' in the gas, and increases beyond 0.5 when it is slower. The
0.5 efficiency limit is due to the preparation of a statistical mixture of two
spin-states, required to enable s-wave scattering. By constructing the
many-body state of the system we show that this preparation yields a mixture of
even and odd parity pair-states, where only even parity can produce molecules.
The odd parity spin-symmetric states must decorrelate before the constituent
atoms can further Feshbach scatter thereby increasing the conversion
efficiency; ``the collision rate'' is the pair decorrelation rate.Comment: 4 pages, 3 figures, final version accepted to Phys. Rev. Let
Stimulated Raman adiabatic passage into continuum
We propose a technique which produces nearly complete ionization of the
population of a discrete state coupled to a continuum by a two-photon
transition via a lossy intermediate state whose lifetime is much shorter than
the interaction duration. We show that using counterintuitively ordered pulses,
as in stimulated Raman adiabatic passage (STIRAP), wherein the pulse coupling
the intermediate state to the continuum precedes and partly overlaps the pulse
coupling the initial and intermediate states, greatly increases the ionization
signal and strongly reduces the population loss due to spontaneous emission
through the lossy state. For strong spontaneous emission from that state,
however, the ionization is never complete because the dark state required for
STIRAP does not exist. We demonstrate that this drawback can be eliminated
almost completely by creating a laser-induced continuum structure (LICS) by
embedding a third discrete state into the continuum with a third control laser.
This LICS introduces some coherence into the continuum, which enables a
STIRAP-like population transfer into the continuum. A highly accurate analytic
description is developed and numerical results are presented for Gaussian pulse
shapes
Thou Shalt is not You Will
In this paper we discuss some reasons why temporal logic might not be
suitable to model real life norms. To show this, we present a novel deontic
logic contrary-to-duty/derived permission paradox based on the interaction of
obligations, permissions and contrary-to-duty obligations. The paradox is
inspired by real life norms
Many-body effects on adiabatic passage through Feshbach resonances
We theoretically study the dynamics of an adiabatic sweep through a Feshbach
resonance, thereby converting a degenerate quantum gas of fermionic atoms into
a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero
temperature mean-field theory which accurately accounts for initial molecular
quantum fluctuations, triggering the association process. The structure of the
resulting semiclassical phase space is investigated, highlighting the dynamical
instability of the system towards association, for sufficiently small detuning
from resonance. It is shown that this instability significantly modifies the
finite-rate efficiency of the sweep, transforming the single-pair exponential
Landau-Zener behavior of the remnant fraction of atoms Gamma on sweep rate
alpha, into a power-law dependence as the number of atoms increases. The
obtained nonadiabaticity is determined from the interplay of characteristic
time scales for the motion of adiabatic eigenstates and for fast periodic
motion around them. Critical slowing-down of these precessions near the
instability leads to the power-law dependence. A linear power law is obtained when the initial molecular fraction is smaller than the 1/N
quantum fluctuations, and a cubic-root power law is
attained when it is larger. Our mean-field analysis is confirmed by exact
calculations, using Fock-space expansions. Finally, we fit experimental low
temperature Feshbach sweep data with a power-law dependence. While the
agreement with the experimental data is well within experimental error bars,
similar accuracy can be obtained with an exponential fit, making additional
data highly desirable.Comment: 9 pages, 9 figure
Verifying Temporal Heap Properties Specified via Evolution Logic
This paper addresses the problem of establishing temporal properties of programs written in languages, such as Java, that make extensive use of the heap to allocate--- and deallocate---new objects and threads. Establishing liveness properties is a particularly hard challenge. One of the crucial obstacles is that heap locations have no static names and the number of heap locations is unbounded. The paper presents a framework for the verification of Java-like programs. Unlike classical model checking, which uses propositional temporal logic, we use first-order temporal logic to specify temporal properties of heap evolutions; this logic allows domain changes to be expressed, which permits allocation and deallocation to be modelled naturally. The paper also presents an abstract-interpretation algorithm that automatically verifies temporal properties expressed using the logic
Neuro-protective effects of Crocin on brain and cerebellum tissues in diabetic rats
Background: Increase in free oxygen radicals and the disruption of defense system make the neurons and astrocytes more sensitive against oxidative damage.Materials and Methods: Rats were divided into three groups containing 10, rats in each group namely: control (C) group, Diabetes Mellitus (DM) group, and Diabetes Mellitus + crocin (DM+crocin) group. Tissue samples were processed by routine histological and biochemical procedures. The sections were stained with Hematoxylen-eosin. Malondialdehyde (MDA), glutathione (GSH), blood glucose, HbA1c levels and xanthine oxidase (XO) activities were assayed.Results: The histological appearence of the cerebrum and cerebellum were normal in the control group. DM group showed some histopathological changes including congestion, perivascular and perineuronal edema in cerebrum. In DM + crocin group, histopathological changes in cerebrum and cerebellum markedly reduced. MDA level and XO activities increased significantly in DM group (P<0.01), but decreased significantly in DM + crocin group when compared to DM group (P<0.01). Blood glucose concentrations increased significantly (p<0.01) in DM group), but decreased significantly in DM + crocin group when compared with DM group (p<0.05). Blood HbA1c levels were normal in control group. But there were significant differences between control and DM groups (p<0.01). On the other hand, blood HbA1c levels decreased in DM+crocin group when compared with the DM group, but it was not statistically significant (p > 0.05).Conclusion: Due to the fact that crocin has an antioxidant and anti-hyperglycemic effects, it can protect the brain and cerebellum tissue against the complications of oxidative stress.Key words: Diabetes mellitus, oxidative stress, crocin, brain, cerebellum
Discrete Search Leading Continuous Exploration for Kinodynamic Motion Planning
This paper presents the Discrete Search Leading continuous eXploration (DSLX) planner, a multi-resolution approach to motion planning that is suitable for challenging problems involving robots with kinodynamic constraints. Initially the method decomposes the workspace to build a graph that encodes the physical adjacency of the decomposed regions. This graph is searched to obtain leads, that is, sequences of regions that can be explored with sampling-based tree methods to generate solution trajectories. Instead of treating the discrete search of the adjacency graph and the exploration of the continuous state space as separate components, DSLX passes information from one to the other in innovative ways. Each lead suggests what regions to explore and the exploration feeds back information to the discrete search to improve the quality of future leads. Information is encoded in edge weights, which indicate the importance of including the regions associated with an edge in the next exploration step. Computation of weights, leads, and the actual exploration make the core loop of the algorithm. Extensive experimentation shows that DSLX is very versatile. The discrete search can drastically change the lead to reflect new information allowing DSLX to find solutions even when sampling-based tree planners get stuck. Experimental results on a variety of challenging kinodynamic motion planning problems show computational speedups of two orders of magnitude over other widely used motion planning methods
Nonlinear adiabatic passage from fermion atoms to boson molecules
We study the dynamics of an adiabatic sweep through a Feshbach resonance in a
quantum gas of fermionic atoms. Analysis of the dynamical equations, supported
by mean-field and many-body numerical results, shows that the dependence of the
remaining atomic fraction on the sweep rate varies from
exponential Landau-Zener behavior for a single pair of particles to a power-law
dependence for large particle number . The power-law is linear, , when the initial molecular fraction is smaller than the 1/N
quantum fluctuations, and when it is larger.
Experimental data agree better with a linear dependence than with an
exponential Landau-Zener fit, indicating that many-body effects are significant
in the atom-molecule conversion process.Comment: 5 pages, 4 figure
- …