7,655 research outputs found

    The influence of Galactic aberration on precession parameters determined from VLBI observations

    Full text link
    The influence of proper motions of sources due to Galactic aberration on precession models based on VLBI data is determined. Comparisons of the linear trends in the coordinates of the celestial pole obtained with and without taking into account Galactic aberration indicate that this effect can reach 20 μ\muas per century, which is important for modern precession models. It is also shown that correcting for Galactic aberration influences the derived parameters of low-frequency nutation terms. It is therefore necessary to correct for Galactic aberration in the reduction of modern astrometric observations

    Towards the electron EDM search: Theoretical study of HfF+

    Get PDF
    We report first ab initio relativistic correlation calculations of potential curves for ten low-lying electronic states, effective electric field on the electron and hyperfine constants for the ^3\Delta_1 state of cation of a heavy transition metal fluoride, HfF^+, that is suggested to be used as the working state in experiments to search for the electric dipole moment of the electron. It is shown that HfF^+ has deeply bound ^1\Sigma^+ ground state, its dissociation energy is D_e=6.4 eV. The ^3\Delta_1 state is obtained to be the relatively long-lived first excited state lying about 0.2 eV higher. The calculated effective electric field E_eff=W_d|\Omega| acting on an electron in this state is 5.84*10^{24}Hz/(e*cm)Comment: 4 page

    Thermal transformations of aluminium-aluminium oxide systems in nanosize layers

    Get PDF
    Aluminium film of more than 2 nm thick indicates, but less than 2 nm do not indicate characteristic absorption and reflection bands for aluminium in range ?=190...1100 nm. By spectrophotometric, gravimetric and microscopic methods it is stated that thickness, mass and absorption, reflection spectrum of aluminium films (d=2...200 nm) undergo considerable transformations as a result of heat treatment in an interval of temperatures 373...600 K during 1...140 min in atmospheric conditions. Kinetic curve of transformation degrees, change of thickness and weights of samples are shown to be satisfactorily described in the context of the logarithmic law. It is established that changes of absorption spectra, thickness and weights of aluminium films are connected with the formation of aluminium oxide on their surface

    Slip-Squashing Factors as a Measure of Three-Dimensional Magnetic Reconnection

    Full text link
    A general method for describing magnetic reconnection in arbitrary three-dimensional magnetic configurations is proposed. The method is based on the field-line mapping technique previously used only for the analysis of magnetic structure at a given time. This technique is extended here so as to analyze the evolution of magnetic structure. Such a generalization is made with the help of new dimensionless quantities called "slip-squashing factors". Their large values define the surfaces that border the reconnected or to-be-reconnected magnetic flux tubes for a given period of time during the magnetic evolution. The proposed method is universal, since it assumes only that the time sequence of evolving magnetic field and the tangential boundary flows are known. The application of the method is illustrated for simple examples, one of which was considered previously by Hesse and coworkers in the framework of the general magnetic reconnection theory. The examples help us to compare these two approaches; they reveal also that, just as for magnetic null points, hyperbolic and cusp minimum points of a magnetic field may serve as favorable sites for magnetic reconnection. The new method admits a straightforward numerical implementation and provides a powerful tool for the diagnostics of magnetic reconnection in numerical models of solar-flare-like phenomena in space and laboratory plasmas.Comment: 39 pages, 9 figures, corrected typos, to appear in ApJ, March 200

    Electric dipole moment of the electron in YbF molecule

    Full text link
    Ab initio calculation of the hyperfine, P-odd, and P,T-odd constants for the YbF molecule was performed with the help of the recently developed technique, which allows to take into account correlations and polarization in the outercore region. The ground state electronic wave function of the YbF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of ytterbium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Yb atom. For the isotropic hyperfine constant A, accuracy of our calculation is about 3% as compared to the experimental datum. The dipole constant Ad (which is much smaller in magnitude), though better than in all previous calculations, is still underestimated by almost 23%. Being corrected within a semiempirical approach for a perturbation of 4f-shell in the core of Yb due to the bond making, this error is reduced to 8%. Our value for the effective electric field on the unpaired electron is 4.9 a.u.=2.5E+10 V/cm.Comment: 7 pages, REVTE

    Calculation of PandP_ and T_ odd effects in $"" sup 205_TIF including electron correlation

    Full text link
    A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter

    Hyperon production in near threshold nucleon-nucleon collisions

    Full text link
    We study the mechanism of the associated Lambda-kaon and Sigma-kaon production in nucleon-nucleon collisions over an extended range of near threshold beam energies within an effective Lagrangian model, to understand of the new data on pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions published recently by the COSY-11 collaboration. In this theory, the hyperon production proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic resonances. Interplay of the relative contributions of various resonances to the cross sections, is discussed as a function of the beam energy over a larger near threshold energy domain. Predictions of our model are given for the total cross sections of pp --> p Sigma+K0, pp --> n Sigma+K+, and pn --> n Lambda K+ reactions.Comment: 16 pages, 4 figures, one new table added and dicussions are updated, version accepted for publication by Physical Review
    corecore