1,265 research outputs found
Recommended from our members
Feasibility and initial efficacy of project-based treatment for people with ABI
Background: Communication impairments are common and pervasive for people a long time following acquired brain injury (ABI). These impairments have a significant impact on a person's quality of life (QOL) postâinjury. Projectâbased treatment is a treatment approach that could have an impact on communication skills and QOL for people with ABI a longâterm postâinjury. This treatment is embedded in a context of meaningful activities chosen by people with ABI, whereby, as a group, they work collaboratively to achieve a tangible end product.
Aims: To evaluate the feasibility and initial efficacy of projectâbased treatment on improving the communication skills and QOL for people with ABI.
Methods & Procedures: An exploratory controlled trial with alternate allocation of groups, and followâup at 6â8 weeks, was completed. Twentyâone people with chronic ABI were recruited in groups of two to three from community settings, allocated to either a TREATMENT (n = 11) or WAITLIST group (n = 10). Participants attended a 20âh groupâbased treatment over 6 weeks where they worked towards achieving a project that helped others. To determine feasibility, four criteria were used: demand, implementation, practicality and acceptability. A range of communication and QOL outcomes was used to determine a fifth feasibility criterion, initial efficacy. Some of these criteria were additionally used to evaluate the feasibility of the outcomes.
Outcomes & Results: All participants received the treatment as allocated with high attendance and no dropouts. The treatment was feasible to deliver as intended and was highly acceptable to participants. Medium and large effect sizes were found from preâ to postâtreatment, and from preâtreatment to followâup for measures of conversation, perceived communicative ability and QOL.
Conclusions & Implications: Projectâbased treatment is feasible with indications of initial efficacy for both communication skills and QOL. The treatment provides a promising new approach for improving communication skills and QOL in people with chronic acquired brain injuries in the community setting
Stormwater runoff drives viral changes in inland freshwaters community composition
Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities
Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development
The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model
Method for the Destruction of Endotoxin in Synthetic Spider Silk Proteins
Although synthetic spider silk has impressive potential as a biomaterial, endotoxin contamination of the spider silk proteins is a concern, regardless of the production method. The purpose of this research was to establish a standardized method to either remove or destroy the endotoxins present in synthetic spider silk proteins, such that the endotoxin level was consistently equal to or less than 0.25 EU/mL, the FDA limit for similar implant materials. Although dry heat is generally the preferred method for endotoxin destruction, heating the silk proteins to the necessary temperatures led to compromised mechanical properties in the resultant materials. In light of this, other endotoxin destruction methods were investigated, including caustic rinses and autoclaving. It was found that autoclaving synthetic spider silk protein dopes three times in a row consistently decreased the endotoxin level 10â20 fold, achieving levels at or below the desired level of 0.25 EU/mL. Products made from triple autoclaved silk dopes maintained mechanical properties comparable to products from untreated dopes while still maintaining low endotoxin levels. Triple autoclaving is an effective and scalable method for preparing synthetic spider silk proteins with endotoxin levels sufficiently low for use as biomaterials without compromising the mechanical properties of the materials
Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications
High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed
Volatile profiling reveals intracellular metabolic changes in Aspergillus parasticus: veA regulates branched chain amino acid and ethanol metabolism
Background: Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes.
Results: Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation.
Conclusions: 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and b-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products
Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism
<p>Abstract</p> <p>Background</p> <p>Filamentous fungi in the genus <it>Aspergillus </it>produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by <it>Aspergillus parasiticus </it>in an attempt to define the association of secondary metabolism with other metabolic and cellular processes.</p> <p>Results</p> <p>Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain <it>Aspergillus parasiticus </it>SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator <it>veA </it>affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a <it>veA </it>disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation.</p> <p>Conclusions</p> <p>1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in <it>A. parasiticus </it>is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products.</p
A weakly overlapping domain decomposition preconditioner for the finite element solution of elliptic partial differential equations
We present a new two-level additive Schwarz domain decomposition preconditioner which is appropriate for use in the parallel finite element solution of elliptic partial differential equations (PDEs). As with most parallel domain decomposition methods each processor may be assigned one or more subdomains, and the preconditioner is such that the processors are able to solve their own subproblem(s) concurrently.
The novel feature of the technique proposed here is that it requires just a single layer of overlap in the elements which make up each subdomain at each level of refinement, and it is shown that this amount of overlap is sufficient to yield an optimal preconditioner. Some numerical experiments-posed in both two and three space dimensions-are included to confirm that the condition number when using the new preconditioner is indeed independent of the level of mesh refinement on the test problems considered
Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit
<p>Abstract</p> <p>Background</p> <p>There is increasing evidence for a latitudinal and altitudinal shift in the distribution range of <it>Ixodes ricinus</it>. The reported incidence of tick-borne disease in humans is on the rise in many European countries and has raised political concern and attracted media attention. It is disputed which factors are responsible for these trends, though many ascribe shifts in distribution range to climate changes. Any possible climate effect would be most easily noticeable close to the tick's geographical distribution limits. In Norway- being the northern limit of this species in Europe- no documentation of changes in range has been published. The objectives of this study were to describe the distribution of <it>I. ricinus </it>in Norway and to evaluate if any range shifts have occurred relative to historical descriptions.</p> <p>Methods</p> <p>Multiple data sources - such as tick-sighting reports from veterinarians, hunters, and the general public - and surveillance of human and animal tick-borne diseases were compared to describe the present distribution of <it>I. ricinus </it>in Norway. Correlation between data sources and visual comparison of maps revealed spatial consistency. In order to identify the main spatial pattern of tick abundance, a principal component analysis (PCA) was used to obtain a weighted mean of four data sources. The weighted mean explained 67% of the variation of the data sources covering Norway's 430 municipalities and was used to depict the present distribution of <it>I. ricinus</it>. To evaluate if any geographical range shift has occurred in recent decades, the present distribution was compared to historical data from 1943 and 1983.</p> <p>Results</p> <p>Tick-borne disease and/or observations of <it>I. ricinus </it>was reported in municipalities up to an altitude of 583 metres above sea level (MASL) and is now present in coastal municipalities north to approximately 69°N.</p> <p>Conclusion</p> <p><it>I. ricinus </it>is currently found further north and at higher altitudes than described in historical records. The approach used in this study, a multi-source analysis, proved useful to assess alterations in tick distribution.</p
Silkworms with Spider Silklike Fibers Using Synthetic Silkworm Chow Containing Calcium Lignosulfonate, Carbon Nanotubes, and Graphene
Silkworm silk has become increasingly relevant for material applications. However, the industry as a whole is retracting because of problems with mass production. One of the key problems is the inconsistent properties of the silk. A means by which to improve the silk material properties is through enhanced sericulture techniques. One possible technique is altering the feed of the silkworms to include single-wall carbon nanotubes (SWNTs) or graphene (GR). Recently published results have demonstrated substantial improvement in fiber mechanical properties. However, the effect of the surfactant used to incorporate those materials into the feed on the fiber mechanical properties in comparison to normal silkworm silk has not been studied or reported. Thus, the total effect of feeding the SWNT and GR in the presence of surfactants on silkworms is not understood. Our study focuses on the surfactant [calcium lignosulfonate (LGS)] and demonstrates that it alone results in appreciable improvement of mechanical properties in comparison to nontreated silkworm silk. Furthermore, our study demonstrates that mixing the LGS, SWNT, and GR directly into the artificial diet of silkworms yields improved mechanical properties without decline below the control silk at high doses of SWNT or GR. Combined, we present evidence that mixing surfactants, in this case LGS, directly with the diet of silkworms creates a high-quality fiber product that can exceed 1 GPa in tensile strength. With the addition of nanocarbons, either SWNT or GR, the improvement is even greater and consistently surpasses control fibers. However, feeding LGS alone is a more economical and practical choice to consistently improve the mechanical properties of silkworm fiber
- âŚ