19 research outputs found
Collective magnetic excitations in mixed-valence Sm0.83Y0.17S
The magnetic spectral response of black-phase mixed-valence Sm0.83Y0.17S has
been measured by inelastic neutron scattering on a single crystal. Two magnetic
peaks are observed in the energy range of the Sm2+ spin-orbit transition (25-40
meV). Both of them exhibit significant dispersion along the three main symmetry
directions, reminiscent of the spin-orbit exciton branch found in pure divalent
SmS. The results can be reproduced by a simple phenomenological model
accounting for the existence of sizeable Sm-Sm exchange interactions, and a
microscopic mechanism is proposed on the basis of the "local-bound-state"
theory developed previously for SmB6.Comment: 6 pages in pdf format, 3 figures, submitted to Phys. Rev.
Indirect and direct energy gaps in the Kondo semiconductor YbB12
Optical conductivity [] of the Kondo semiconductor YbB
has been measured over wide ranges of temperature (=8690 K) and photon
energy ( 1.3 meV). The data reveal the
entire crossover of YbB from a metallic electronic structure at high
into a semiconducting one at low . Associated with the gap development in
, a clear onset is newly found at =15 meV for 20 K. The onset energy is identified as the gap width of YbB
appearing in . This gap in \sigma(\omega)\sigma(\omega)$ is interpreted as arising from the direct gap. The
absorption coefficient around the onset and the mIR peak indeed show
characteristic energy dependences expected for indirect and direct optical
transitions in conventional semiconductors.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp
Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions
We have studied the effect of Lu substitution on the spin dynamics of the
Kondo insulator YbB12 to clarify the origin of the spin-gap response previously
observed at low temperature in this material. Inelastic neutron spectra have
been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25,
0.90 and 1.0. The data indicate that the disruption of coherence on the Yb
sublattice primarily affects the narrow peak structure occurring near 15-20 meV
in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV
remain almost unaffected. It is inferred that the latter features reflect
mainly local, single-site processes, and may be reminiscent of the inelastic
magnetic response reported for mixed-valence intermetallic compounds. On the
other hand, the lower component at 15 meV is most likely due to dynamic
short-range magnetic correlations. The crystal-field splitting in YbB12
estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the
same order of magnitude as other relevant energy scales of the system and is
thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra
details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis
label change
Hall effect in the vicinity of quantum critical point in Tm1-xYbxB12
The angular, temperature and magnetic field dependences of Hall resistance
roH for the rare-earth dodecaboride solid solutions Tm1-xYbxB12 have been
studied in a wide vicinity of the quantum critical point (QCP) xC~0.3. The
measurements performed in the temperature range 1.9-300 K on high quality
single crystals allowed to find out for the first time in these fcc compounds
both an appearance of the second harmonic contribution in ro2H at QCP and its
enhancement under the Tm to ytterbium substitution and/or with increase of
external magnetic field. When the Yb concentration x increases a negative
maximum of a significant amplitude was shown to appear on the temperature
dependences of Hall coefficient RH(T) for the Tm1-xYbxB12 compounds. Moreover,
a complicated activation type behavior of the Hall coefficient is observed at
intermediate temperatures for x>0.5 with activation energies Eg~200K and
Ea~55-75K in combination with the sign inversion of RH(T) at low temperatures
in the coherent regime. The density of states renormalization effects are
analyzed within the variation of Yb concentration and the features of the
charge transport in various regimes (charge gap formation, intra-gap manybody
resonance and coherent regime) are discussed in detail in Tm1-xYbxB12 solid
solutions.Comment: 38 pages including 10 figures, 70 reference